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From classical Fourier analysis, any function on the Boolean cube {0, 1}n admits an orthogo-
nal decomposition into homogeneous parts, and this also extends to the d-dimensional complete
complex ∆d(n), which is the set of all subsets of [n] of size at most d + 1, as long as d + 1 ≤ n

2 .
A d-dimensional high-dimensional expander is often viewed and used as a sparse approximation
of ∆d(n), and this work shows that indeed a function on the hyperedges of an HDX also admits
an (approximate) orthogonal decomposition. We first define a condition called properness that is
sufficient for a simplicial complex to admit such decompositions.

Recall that a simplicial complex is simply a downward complex hypergraph. A simplicial com-
plex is pure if for every subset t ∈ X, there is some superset of t in the top layer X(d).

1 When do functions decompose?

We use the same definitions and notations as in previous weeks. In particular, we focus on the
linear algebraic properties of the operators Ui : Ci → Ci+1 and Di+1 : Ci+1 → Ci, and observe
that Ui and Di+1 are adjoints under the inner product 〈f, g〉 = Es∈Πi [f(s)g(s)], where f, g ∈ Ci.
We wish to decompose the space Ck.

Let H i ⊆ Ci be the space of all functions that are killed by the Di operator, that is, Hi := kerDi,
and let V i be the lifting of H i to Ck by the Up walks. That is, V i := Uk−iH i, where Uk−i is a
shorthand for Uk−1 · · ·Ui+1Ui, used when the domain of concantenated up walk is clear. Since D−1

does not exist, we let H−1 := C−1 = R.

Definition 1.1. A k-dimensional simplicial complex is proper if the operator Di+1Ui is positive
definite for all −1 ≤ i ≤ k − 1. Because 〈Di+1Uif, f〉 = 〈Uif, Uif〉 = ||Uif ||2, this is equivalent to
ker(Ui) being trivial, or Ui being full-rank/injective.

Theorem 1.2 (Decomposition Theorem). If X is proper, then Ck = V k⊕V k−1⊕V k−2⊕· · ·⊕V −1.

Proof. Induction on k. Base case (k=-1) is true as V −1 = H−1 = C−1.
Let f ∈ Ck. We have, Ck = kerDk ⊕ imD∗k = kerDk ⊕ imUk−1, and so f = hk + h, where

hk ∈ kerDk = V k and h ∈ imUk−1. By properness, Uk−1 is an injective map, so we can find a
unique g ∈ Ck−1 such that h = Uk−1g. By induction hypothesis, g can be uniquely decomposed
into g = hk−1 + Uk−2hk−2 + Uk−2Uk−3hk−3 + · · ·+ (Uk−2Uk−3 · · ·U−1)h−1, with hi ∈ H i, and this
means f = hk + Uhk−1 + U2hk−2 + · · ·+ Uk+1h−1, if we use the concatenated walk notation.

Given f , the choice for hi is unique throughout the inductive step, and so f = f−1 +f0 + · · ·+fk,
where fi ∈ V i, and this decomposition is unique.
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The analogous decomposition over the Boolean hypercube is into homogeneous functions. It
turns out we can define a similar notion of homegenity here.

Proposition 1.3 (Analog of monomial). Given a face s ∈ X(i), ys is the indicator of containing
the face s. ys is a function in Cj for all j ≥ i. Moreover, the functions ys across the levels are
related as Ujys = (1− i+1

j+2)ys, where the ys on LHS is in Cj, and the one on RHS is in Cj+1.

Proof. (Ujys)(t) = 1
|t|
∑
x∈t

ys(t\{x}) = |t|−|s|
|t| ys(t)

Lemma 1.4 (Homogeneous functions). Let X be a proper simplicial complex, and the spaces be
defined as above. Every function h ∈ V i can be uniquely represented as h =

∑
s∈X(i)

h̃(s)ys. Because

all s that appear in the decomposition have the same dimension, h are analogous to homogeneous
polynomials. The coefficients also satisfy the following harmonicity condition:

∑
s⊃t

Πi(s)h̃(s) = 0

Proof. Let h = Uk−ig, where g ∈ H i.

g =
∑
s∈X(i)

g(s)ys

h = Uk−ig =
∑
s∈X(i)

g(s)Uk−iys

=
∑
s∈X(i)

g(s)(1− i+ 1

i+ 2
)(1− i+ 1

i+ 3
) · · · (1− i+ 1

k + 1
)ys

=
∑
s∈X(i)

h̃(s)ys

The harmonicity condition follows from the fact that g ∈ H i =⇒ Dig = 0.
Clearly, the coefficients g(s) are unique for a given g. So as long as the lifting Uk−i is injective

(for a unique g corresponding to h), we have a unique representation, and this is exactly what
proper complexes offer.

Combining Lemma 1.4 and Theorem 1.2, we see that any function f ∈ Ck can be uniquely
written as f =

∑
s∈X h̃(s)ys.

Definition 1.5. The largest d such that there is some face s ∈ X(d − 1) with h̃(s) 6= 0 is defined
to be the degree of f . This is completely analogous to the usual decomposition, where degree of a
function is the degree of the largest monomial that appears in its decomposition.

It follows that {ys}s∈X(−1)∪X(0)∪···∪X(d) spans the set of all functions of degree at most d + 1.
Is there linear dependence in this spanning set? Yes, and the following lemma finds a basis for
functions of degree at most d+ 1. It is important to note that the functions themselves still reside
in Ck, only their degree is at most d+ 1.

Lemma 1.6. The set {ys}s∈X(d) is a basis for the space of functions of degree at most d.
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Proof. If some set r ∈ X(k) contains t, where |t| ≤ d, then it contains
(k+1−|t|
d+1−|t|

)
many supersets of

t in X(d). This means, yt = 1

(k+1−|t|
d+1−|t|)

∑
t⊂s,s∈X(d)

ys.

Now we need to show that {ys}s∈X(d) has same number of elements as the dimension of at most

degree d + 1 functions, which is
∑d

i=−1 dimV i =
∑d

i=−1 dimH i =
∑d

i=−1(dimCi − dimCi−1) =

dimCd = |X(d)|. This completes the proof as |{ys}s∈X(d)| = |X(d)|.

It turns out that with the right definition of high dimensional expansion, it is easy to ensure
properness. Moreover, under this high dimensional expansion, the decomposition also has other
nice properties. Before we see what buys us properness in Section 2, let us see an analog of the
classic Degree-1 Theorem from Boolean Function Analysis on proper simplicial complexes.

Theorem 1.7 (Degree-1 Theorem). Suppose X is a proper k-dimensional simplicial complex with
k ≥ 2, whose 1-skeleton is connected. A function f ∈ Ck is Boolean and degree-1 iff f is the
indicator of intersecting I or of not intersecting I for some independent set I of the 1-skeleton.

Proof. Let f =
∑

v∈X(0) cvyv, so 0 = f2 − f =
∑

v∈X(0)(c
2
v − cv)yv +

∑
{u,v}∈X(1) cucvy{u,v}.

Substituting yv = 1

(k+1−1
1+1−1)

∑
u:{u,v}∈X(1)

y{u,v} = 1
k

∑
u:{u,v}∈X(1)

y{u,v},

and using the fact that {y{u,v}}{u,v}∈X(1) is a basis, we conclude all coefficients must be zero.
This means, 2kcucv = cu(1− cu) + cv(1− cv) for any {u, v} ∈ X(1). In fact, for any {u, v, w} ∈

X(2),

2kcucv = cu(1− cu) + cv(1− cv)
2kcucw = cu(1− cu) + cw(1− cw)

2kcwcv = cw(1− cw) + cv(1− cv)

Solving this system, we see that two cases are possible:

1. Two of cu, cv, cw are 0, and the third is 0 or 1.

2. Two of cu, cv, cw are 1
k+1 , and the third is 1

k+1 or 1− 1
k+1 .

There cannot be an edge between u, v if u and v do not belong to the same case (consider
triangle containing {u, v}), and because graph is connected, all vertices belong to one of the two
cases. In the first case, all vertices u for which cu = 1 must form an independent set. So, f is the
function that determines intersection with the independent set I, where I = {u : cu = 1}.

If f corresponds to second case, then 1−f corresponds to the first case, because 1 = 1
k+1

∑
u∈X(0)

yu,

and so it is the indicator of not intersecting the independent set I = {u : cu = 1− 1
k+1}.

2 Chasing Properness

The operators Ui−1Di and Di+1Ui can be seen as random walks on X(i), which we call lower
random walk and upper random walk respectively, and represent as UD and DU when the level is
clear from context. Given current s ∈ X(i), the probability that the next face under random walk
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UD (or DU) is t ∈ X(i) is given by the weight of f(t) while evaluating UDf(s) (or DUf(s)). Let
M+
i be the walk DU but constrained to be non-lazy, that is,

DU =
1

i+ 2
I +

i+ 1

i+ 2
M+
i

If X were a d-regular unweighted expander, then X would have dimension 1, and Π0 and Π1

would both be uniform. In this case, M+
0 corresponds to the standard adjacency walk, while UD

is the walk that chooses a vertex uniformly at random at every step. The statement that second
eigenvalue of this expander is λ would be equivalent |M+

0 −UD| < λ. Generalizing this notion, we
have the following:

Definition 2.1. Let X be a k-dimensional simplicial complex, with probability distribution Πk on
the top face from which Πi is derived as before, and let DU , UD and M+

i be walks on X(i). For a
γ < 1, we say X is a γ-high-dimensional-expander (or γ-HDX) if for every 0 ≤ i ≤ k − 1,

|M+
i − UD| < γ

where the norm used is operator norm: |A| = max
|x|=1
〈Ax, x〉.

This definition easily yields properness, as the following lemma shows:

Lemma 2.2. If X is a k-dimensional γ-HDX with γ < 1
k+1 , then X is proper.

Proof. Let f ∈ Cj .

〈Uf,Uf〉 = 〈DUf, f〉 =
1

j + 2
〈f, f〉+

j + 1

j + 2
〈M+

j f, f〉

=
1

j + 2
〈f, f〉+

j + 1

j + 2
(〈(M+

j − UD)f, f〉+ 〈UDf, f〉)

≥ 1

j + 2
||f ||2 − j + 1

j + 2
||M+

j − UD|| ||f ||
2 +

j + 1

j + 2
〈Df,Df〉

≥ 1

j + 2
||f ||2 − j + 1

j + 2
γ||f ||2 + 0

= ||f ||2(
1

j + 2
− j + 1

j + 2
γ)

The last term is strictly positive if γ < 1
j+1 , and so γ < 1

k+1 is sufficient.

But hadn’t we defined a different definition for HDX in previous weeks based on [2] in terms of
spectral link expansion? The two definitions generalize different properties of expanders, and we
use this definition here as this readily yields properness. Fortunately, however, the two definitions
turn out to be equivalent as Section 5 of [1] shows. We skip the proof of equivalence for the sake
of brevity. In this document, we work only with this new definition, and this is the definition that
the term γ-HDX will refer to.

One of the classic results in Fourier decomposition is the Friedgut-Kalai-Naor (FKN) Theorem,
which can be seen as the robust version of Degree 1 Theorem, and we work towards proving an
FKN theorem for γ-HDX in the next section.
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3 FKN Theorem on High Dimensional Expanders

In [3], the author proves FKN Theorem for the Boolean slice, as the following theorem shows.

Theorem 3.1 (FKN Theorem on the slice [3]). Let n, k ∈ Z≥0 and ε ∈ (0, 1) such that n/4 ≤
k + 1 ≤ n/2. Let F :

( [n]
k+1

)
→ {0, 1} be a Boolean function such that E[(F − f)2] < ε for some

degree 1 function f :
( [n]
k+1

)
→ {0, 1}. Then there exists a degree 1 function g :

( [n]
k+1

)
→ R such that

Pr[F 6= g] = O(ε)

Furthermore, g ∈ {0, 1, yi, 1− yi}, that is, g is a Boolean dictator.

We are looking for an analog of the above theorem for High Dimensional Expanders. The proof
follows a generic strategy to extend theorems from Boolean slice to High Dimensional Expanders.
The idea is that if we wish to prove the FKN Theorem for level k, we move to a higher level (in
this case 2k, 4k levels), and fix a set t on the higher level. Now because of downward closure, all
subsets of t of level k will be present, and now we can apply the theorem for slice (in this case
Theorem 3.1). Now the task reduces to stitch together the solutions obtained for different views
from different t. In this case, we take help of Agreement Theorem from [2].

In [2], the authors prove an agreement theorem given below. Dk,2k is the ditribution on pairs
of elements from X(k) obtained by first sampling an element t of X(2k), and then sampling two
subsets in X(k) of t uniformly at random.

Theorem 3.2 (Agreement Theorem for High Dimensional Expanders). Let X be a d-dimensional
λ < 1

3d2
, let k2 < d, and let Σ be some fixed alphabet. Let {fs : s → Σ}s∈X(k) be an ensemble of

local functions on X(k), i.e. fs ∈ Σs for each s ∈ X(k). If

Pr
(s1,s2)∈Dk,2k

[fs1 |s1∩s2 ≡ fs2 |s1∩s2 ] > 1− ε

then there is a g : X(0)→ Σ such that

Pr
s∼Πk

[fs ≡ g|s] ≥ 1−Oλ(ε)

Below we give a rough sketch of how the FKN Theorem may be extended to High Dimensional
Expanders. Please look at the paper for details. We borrow terminology from Theorem 3.1.

Fix a t ∈ X(2k) and let εt be the agreement between F and f on the part of X(k) that
has subsets of t. Et∈X(2k)[εt] = ε. Focusing on these restrictions f |t and F |t, we can apply

Theorem 3.1 to get Boolean dictators gt :
(
t
k

)
→ {0, 1} that have agreement O(εt) to f |t (and

F |t). gt can be written as a string in Σt by taking the degree 1 representation gt =
∑

i∈t dt(i)yi,

where dt : t → {0, 1, 1
k+1 ,

k
k+1 = Σ, and dt can been as a string in Σt. To be able to apply

Theorem 3.2 how can we ensure that dt strings agree on their intersections? That is, we need to
bound Pr

(t1,t2)∈D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ].

This is where the 4k-dimension layer comes in. Just as there are strings dt ∈ Σt for t ∈ X(2k),
there are also strings eu ∈ Σu for u ∈ X(4k) (and boolean dictators hu corresponding to gt). If
we can say that for t ⊂ u, dt string must agree with the restriction of eu to t, then we are done,
because then dt1 and dt2 cannot be different either.
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If t ⊂ u and dt differs from (restriction of) eu, then their corresponding functions gt and hu|t
are also different. But if two Boolean dictators differ, their disagreement is Ω(1). Moreover, gt is
O(ε) close to f |t on average, and hu is O(ε) close to f |u on average, and so by triangle inequality
EuEt⊂uE[||gt − hu|t] ≈ EuEt⊂uE[(f |t − fu|t)2] = 0. This means that dt and eu cannot differ too
often, and as a consequence, Pr

(t1,t2)∈D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] is upper bounded to be O(ε).

Therefore, we can use Theorem 3.2 and get a global string d : X(0) → Σ, which corresponds
to a function g =

∑
i∈X(0)

d(i)yi that agrees with gt locally (so is approximately Boolean), and hence

with f (and F ) as well.

4 Generalizing high dimensional expansion to Posets: Eposets

In this section, we generalize γ-HDX to general posets, and derive interesting properties of the
decomposition in the next section. To generalize the notion fully, we need analogs of simplicial
complexes, purity, properness and γ-HDX (Definition 2.1).

First, recall that informally speaking, a ranked or graded poset is a poset that has some notion
of rank in Z associated with every element that respects the partial order. For sets, this is the size
of set, and for subspaces this is the dimension (strictly speaking, in this case size and dimension
are 1+rank). We will be dealing k-dimensional posets, where the rank of all elements is between
−1 and k. A k-dimensional poset is pure if every element of rank < k has some element on the
level k (elements with rank k) that is greater under the partial order.

Definition 4.1 (Analog of simplicial complex). Let X be a finite ranked pure d-dimensional poset
with a unique minimum element of rank −1. Denote by X(i) all elements in X of rank i. We say
X is measured by a distribution (Πd,Πd−1, · · · ,Π−1) if it satisfies the following properties:

1. Πi is a distribution on X(i)

2. Πi−1 ⊂ Πi for i > −1

3. Πi−1 depends only on Πi for i > −1

Given these, we can again define the function spaces Cj on X(j), and the walk operators
Uj , Dj+1. It is easy to see the complete complex ∆d(n) and Grassmann poset Grq(n, d) are both
covered by this definition. The definition of properness is also easily extended now, and we say a
measured poset is proper if kerUj is trivial for all j ≤ d.

Finally, we complete the last leg of this generalization, getting γ-eposet as an analog of γ-HDX.

Definition 4.2 (γ-eposet). Let −→r ,
−→
δ ∈ Rk≥0, and let γ < 1. A measured poset X is a (−→r ,

−→
δ , γ)-

eposet if for 0 ≤ j ≤ k − 1,

||Dj+1Uj − rjI − δjUj−1Dj || ≤ γ

As should be clear, we can fit in γ∗-HDX into this definition by letting rj = 1
j+2 ,δj = 1 − 1

j+2
and γ = γ∗/2 because then

||Dj+1Uj −
1

j + 2
I − j + 1

j + 2
Uj−1Dj || ≤

1

2
γ∗ ≤ j + 1

j + 2
γ∗

||M+
j − UD|| ≤ γ

∗

6



It can be shown that any γ-eposet admits decompositions similar to those in Section 1. More-
over, we can now show that the decomposition is approximately orthogonal and approximately an
eigendecomposition.

5 Properties of decomposition in Eposets

Theorem 5.1 (Properties of decomposition). Let X be a k-dimensional (−→r ,
−→
δ , γ)-eposet. For

every function f ∈ C l(l ≤ k), the decomposition f = f−1 + f0 + · · · + fl satisfies the following
properties for small enough γ:

1. (Orthogonality) For i 6= j, |〈fi, fj〉| = O(γ)||fi|| ||fj ||.

2. ||f ||2 = (1 +±O(γ))(||f−1||2 + ||f0||2 + · · ·+ ||fl||2).

3. (Eigendecomposition) If l < k, fi are approximate eigenvectors of DU operator:
||DUfi − rll−i+1fi|| = O(γ)||fi||.

4. If l < k, 〈DUf, f〉 =
∑l

i=−1 r
l
l−i+1||fi||2 ±O(γ)||f ||2

Remark 5.2. A proper measured poset is sufficient for decomposition to exist. But we require it
to be an eposet for the decomposition to have these properties.

Remark 5.3. The last condition implies that X is proper for −→r > 0 and small enough γ, and so
the decomposition exists.

Remark 5.4. An important thing to note is that the constants hidden in asymptotics depend only

on k,−→r ,
−→
δ , and not on |X|. In the known constructions of HDX, the blowup |X|

|X(0)| increases

rapidly as the expansion γ decreases (as ( 1
γ )O(k2)), and so it is important that the error terms are

independent of |X|, or decreasing γ will increase the error via |X|. See [2] for more details.

Item 2 follows readily from item 1, and item 4 follows from item 3. So we focus on proving
items 1 and 3.

5.1 Proof of Item 3

With the right indices, we know that DU ≈ rI + δUD with the error bounded by γ. Now,
DU2 = (DU)U ≈ (rI + δUD)U = rU + δU(DU) ≈ rU + δU(r′I + δ′UD) = (r + δr′)U + δδ′U2D,
and the error is bounded by γ||U ||+ δγ||U || ≤ (1 + δ)γ = O(γ) because ||U || ≤ 1.

We observe that even if we repeat these steps multiple times starting from DU j instead of DU2,

the error term will always be bounded as O(γ) as long as j ≤ k (we treat k,−→r ,
−→
δ as constants).

These calculations may be turned into a formal inductive proof that for 1 ≤ j ≤ l + 1 ≤ k,
DU j : X(l − j + 1)→ X(l),

||DU j − rljU j−1 − δljU jD|| = O(γ) (1)

where δlj = δlδl−1 · · · δl−j+1, and

rlj = rl + rl−1δl + rl−2δlδl−1 + · · ·+ rl−j+1(δlδl−1..δl−j+2) = rl + rl−1δ
l
1 + rl−2δ

l
2 + · · · rl−j+1δ

l
j−1.
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Recall that in the decomposition, ∃hi ∈ H i such that U l−ihi = fi. Applying Equation 1 to
hl−j+1, and using H l−j+1 = kerDl−j+1, we conclude that

||DUfl−j+1 − rljfl−j+1 − 0|| = ||DU jhl−j+1 − rljU j−1hl−j+1 − δljU jDhl−j+1|| = O(γ)||fl−j+1||

Replacing l − j + 1 by i, we get ||DUfi − rll−i+1fi|| = O(γ)||fi||, proving item 3.

5.2 Proof of Item 1

There are two parts to this proof. First, we show 〈fi, fj〉 = O(γ)||hi|| ||hj ||, and then we show that
||fi|| = (1±O(γ))rll−ir

l−1
l−i−1 · · · r

i
0||hi||. Clearly, the two together prove item 1.

(i) For i 6= j, 〈fi, fj〉 = O(γ)||hi|| ||hj ||

Proof by induction on l. Base case l = 0 means that either i = l or j = l (not both). WLOG
let i = l, then 〈fi, fj〉 = 〈hl, U l−jhj〉 = 〈Dlhl, U

l−j−1hj〉 = 0 because hl ∈ kerDl.

Now suppose the claim holds till l−1. 〈fi, fj〉 = 〈U l−ihi, U l−jhj〉 = 〈DU l−ihi, U l−j−1hj〉. Using
equation 1 on hi, we can see that DU l−ihi = U l−i−1hi + U l−iDhi + Γi, where Γi is the error term
bounded by O(γ)||hi||. But U l−iDhi = 0, and so,

〈fi, fj〉 = 〈U l−i−1hi + Γi, U
l−j−1hj〉

= 〈U l−i−1hi, U
l−j−1hj〉+ 〈Γi, U l−j−1hj〉

≤ O(γ)||hi|| ||hj ||+ ||Γi|| ||U l−j−1|| ||hj ||
≤ O(γ)||hi|| ||hj ||+O(γ)||hi|| ||hj || = O(γ)||hi|| ||hj ||

(ii) ||fi|| = (1±O(γ))rll−ir
l−1
l−i−1 · · · r

i
0||hi||. Once again, using equation 1,

||fi||2 = 〈fi, fi〉 = 〈U l−ihi, U l−ihi〉
= 〈Dl−iU l−ihi, hi〉
= 〈Dl−i−1DU l−ihi, hi〉
= 〈Dl−i−1U l−i−1hi +Dl−i−1Γi, hi〉
= 〈Dl−i−1U l−i−1hi, hi〉+ 〈Dl−i−1Γi, hi〉
≤ 〈Dl−i−1U l−i−1hi, hi〉+ ||Dl−i−1Γi|| ||hi||
≤ 〈Dl−i−1U l−i−1hi, hi〉+ ||Γi|| ||hi||
≤ 〈Dl−i−1U l−i−1hi, hi〉+O(γ)||hi||2

And this calculation can be extended to obtain ||fi||2 = ||hi||2 +O(γ)||hi||2.
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