
Coding Theory

July 26, 2020

1 Introduction

Roughly speaking, coding theory studies properties and algorithmic questions of subsets of strings
C ⊆ Σn over a finite alphabet Σ, where a subset C is appropriately denoted a code and its ele-
ments are denoted as codewords. Despite this seemingly simplistic description, to really “unlock”
interesting properties one usually brings to bear way more structure such as algebraic properties of
low degree polynomials (in which case Σ is taken to be a finite field F) or combinatorial properties
of expander graphs. Codes are usually designed with a given error model in mind. Are symbols
erased, changed, inserted and/or deleted? For instance, are corruptions caused adversarially with
access to the entire codeword or done probabilistically and independently one symbol at time?

Probabilistic code constructions typically enjoy great success with several examples achieving
optimal/nearly optimal parameters, and for this reason probabilistic methods have flourished within
coding theory. However, it can be notoriously hard to find explicit 1 constructions. Why should
one bother? One difficulty may be that with high probability a sampled random code could have
all the desired properties, but certifying that a given one indeed does might be computationally
hard. Figuratively, this line of coding theory research is trying to find hay in a haystack and it can
be surprisingly difficult to do so.

Besides the quest for explicitness in code constructions, one might also ask for efficient algo-
rithms that can convert a message into a codeword of C and/or conversely given a word in Σn

(possibly satisfying some closeness assumption to C) efficiently finds the closest (or a list of closest)
codewords in C. This search for algorithmic efficiency goes under the umbrella of algorithmic coding
theory. In contrast, combinatorial coding theory seeks to understand bounds on what is achievable
or impossible regardless of algorithmic efficiency or explicitness.

The development of Probabilistically Checkable Proofs (PCPs) has placed a strong emphasis on
local properties of codes. An example is the need to test whether a function (given as an evaluation
table) is a low-degree multivariate polynomial by querying it only at a few entries. In other words,
this is asking whether Reed–Muller codes can be locally tested. The search for codes admitting
local properties has motivated many developments in the past three decades and it is still a very
active field within coding theory with longstanding open problems.

Another central notion in modern coding theory is list decoding. It is a relaxed decoding model,
where given an arbitrary word in Σn we seek all codewords of a code, say C, within a given radius
ρ of it. The difference is that ρ can be taken to be much larger than the unique decoding radius
of the code C, in which case there may be a list of codewords rather than (at most) a single one.
This concept is not new dating back to Elias [Eli57]. However, it was made algorithmic much

1Explicit means that the construction can be done in polynomial time in n.

1



more recently with a breakthrough result of Sudan [Sud97] for list decoding Reed–Solomon codes.
Subsequently, the algorithmic list decoding radius was improved by Guruswami–Sudan [GS98]
all the way to the Johnson bound and finally to the best possible by Guruswami–Rudra [GR08]
(achieving capacity for the so-called folded Reed–Solomon codes). This concept is now widely used
in coding theory used even to the standard unique decoding regime. Moreover, list decoding has
found applications outside such as worst-case to average-case hardness among others.

2 Expander and Codes

The pseudorandom properties of expander graphs can be very useful in coding theory. Expanders
are usually employed to either perform distance amplification or to define the parity check matrix
of a code. In some cases, decoding algorithms of expander based codes are very efficient (specially
compared to some algebraic decoding methods). In this section, we mention only two older but
very representative results (see some other sections in this document and the HDX document) for
more references.

2.1 Distance Amplification

Expander graphs can be used to boost the distance of codes.

• In [ABN+92], Alon et al. show how the pseudorandom properties of expander graphs can be
used for distance amplification.

2.2 Parity Check Matrix

The adjacency relation of an expander graph can be interpreted as a parity check matrix.

• In [SS96], Sipser and Spielman use the adjacency relation of bipartite (lossless) exapander
graphs to define the parity check matrix of good binary codes. They also provide a very
efficient decoding algorithm for their codes.

Open Problem 2.1. Can some HDX (possibly algebraic) yield good expander codes? Note that
ensuring constant rate seems quite challenging.

2.3 Explicit Constructions

2.4 Large Alphabet

Thanks to a host of algebraic objects and techniques suitable for large fields, codes overs large
alphabets are reasonably well-understood (specially compared to the binary case for which several
mysteries remain).

2.5 Capacity Achieving Codes

Intuitively, codes of distance 1 − R can have rate at most R. Codes of rate R that can be combi-
natorially list decoded within radius 1− R − ε (for arbitrarily small ε > 0) are known as capacity
achieving codes. Over larger alphabets, there are known explicit constructions of such capacity
achieving codes which also admit efficient list decoding algorithms.
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• In a breakthrough result [GR08], Guruswami and Rudra show that starting from the well-
known Reed–Solomon (RS) codes and using a folding operation 2 yields codes achieving
capacity. These codes were dubbed folded-RS codes.

• Kopparty [Kop15] found another explicit construction achieving capacity which is also al-
gebraic. It uses the evaluations of a polynomial as well as its derivatives in a construction
known as multiplicity codes.

• In [GW13], Guruswami and Wang greatly simplify and speedup the folded-RS decoding.
This simplification is achieved by using linear algebraic methods instead of more complex
root-finding procedures over extension fields.

• In [KRSW18], Kopparty et al. refine the list decoding parameters of folded-RS codes.

2.6 Binary Alphabet

Contrary to large alphabet codes, binary codes as not as well understood.

• In [TS17], Ta-Shma gives a breakthrough explicit construction of binary codes achieving
nearly optimal distance versus rate trade-off the so-called Gilbert–Varshamov bound. This
construction is based on a “higher-order” version of the celebrated zig-zag product [RVW00].

• Many binary code results are obtained by code concatenation starting from powerful code
constructions over large alphabets. Unfortunately, no such explicit construction is known
yielding optimal or near optimal distance versus rate trade-off.

Open Problem 2.2 (KKKK. . .K). Find explicit binary codes of rate Ω(ε2) efficiently list decod-
able within radius 1/2− ε.

3 Locally Testable Codes

Locally Testable Codes (LTCs) are codes C whose membership can be probabilistically tested by
reading only a constant 3 number of symbols of a purported codeword x (non-codewords are rejected
with probability proportional to their distance from C).

Open Problem 3.1 (KK. . .K). Construct good LTCs, i.e., LTCs of constant relative distance
and constant rate.

• In [BSGH+04], Ben-Sasson et al. show, in particular, an interesting connection between PCPs
of Proximity (PCPP) and LTCs.

• In [Din06], Dinur besides giving a combinatorial proof of the PCP theorem also gives a LTC
of block length O(t · polylog(t)) using a PCPP strengthening of her result.

• In [Mei09], Meir gives a combinatorial proof of LTCs of block length O(t · polylog(t)) (recall
that Dinur’s proof achieving this near linear block length started from a suitable algebraic
construction of PCPPs).

2Actually, it is an interpretation rather than an operation.
3The non constant query regime is also interesting.
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• In [DDHRZ20], Dikstein et al. propose an approach towards good LTC using HDXs. They
also use HDX as a unifying language for LTCs.

4 Locally Decodable Codes

Locally Decodable Codes (LDCs) are codes whose symbols of the original message can be proba-
bilistically decoded from a corrupted codeword (under some distance assumption) by reading only
a constant 4 number of symbols.

Open Problem 4.1. Reduce the gap between upper and lower bounds on the rate of LDCs.

4.1 Constructions

• In [CY20], Cohen and Yankovitz use expanders to perform query-efficient distance amplifica-
tion of LDCs.

• In [Efr12], Efremenko gives a framework for constructing locally decodable codes from irre-
ducible representations.

4.2 Lower Bounds

• In [BCG19], Bhattacharyya et al. give a direct combinatorial proof of a known lower boud
on 3-query LDC.

• In [BDSS11], Bhattacharyya et al. give a lower bound for 2-query LCCs. A LCC is closely
related to LDC, but its definition only asks the local decoding of a codeword symbol rather
than a message symbol.

• Katz–Trevisan [KT00] lower bounds on LDCs ruling out the existence of good LDCs.

5 Randomized Analysis

The use of randomized analysis to derive bounds on code parameters has greatly evolved with the
use of more sophisticated methods such as the chaining argument [Tal05]. Currently, we know very
sharp bounds on the list sizes of random codes.

• In [MRRZ+19], Mosheiff et al. show that random ensembles of LDPCs achieve list decoding
capacity.

• In [GLM+20], Guruswami et al. obtain very sharp bounds for the list-decoding and list-
recovery of random linear codes.

• In [RW14], Rudra and Wootters show that randomly puncturing a code of sufficiently large
distance yields w.h.p. combinatorially list decodable codes from large list decoding radius.
They use the chaining method (which is a sophisticated form of union bound).

• In [Woo13], Wootters give list size bound for random linear codes of large distance.

4Similarly to LTCs, the non constant query regime is also interesting.
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6 Limits on Binary Codes

As surprising as it may sound we still do not know the precise rate upper bound for binary codes
given their distance.

Open Problem 6.1 (KKKK. . .K). What is the maximum rate of binary codes of relative distance
d/n?

• In [MRRW77], McEliece et al. derive rate upper bounds for binary codes using linear pro-
gramming and identities involving orthogonal polynomials naturally arising in the Hamming
scheme [Del75].

• In [FT05], Friedman and Tillich use spectral graph theory and notions of algebraic topology
as an approach to obtain rate upper bounds.

• In [NS05], Navon and Samorodnitsky show that for large distances the bounds of MRRW
based on linear programming are almost tight (of course this does not rule out tighter re-
laxations). They also derive the first linear programming bound of MRRW using a simpler
Fourier analytic proof.

• In [Alo09], Alon gives a rate upper bound of O(ε2 log(1/ε)) for ε-balanced codes using a rank
lower bound for diagonally dominant matrices.

7 Shannon Error Model

In the Shannon error model, errors are caused probabilistically and independently. Think of a
communication channel that flips every transmitted bit with a fixed probability p. An extremely
elegant mathematical theory of information was developed to understand this kind of model and
some probabilistic code constructions of the original theory took decades to see explicit counter-
parts.

• In the landmark paper [Sha48], Shannon lays the mathematical foundation of information
theory and communication.

• After 60 years after Shannon result [Sha48], Arikan [Ari09] introduces the so-called polar
codes which are explicit codes asymptotically achieving capacity.

• In [GRY20], Guruswami et al. explore larger kernels to achieve a near optimal convergence
to capacity.

Open Problem 7.1. Can the encoding time of [GRY20] be improved?

8 Beyond the Johnson Bound

The Johnson bound is a generic result about the combinatorial list decodability of any code. It
establishes list decoding radii and list size bounds based only on the code distance. In essence,
it says that codes are combinatorially list decodable within arbitrarily large radius provided their
distance is sufficiently large.
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• In [ST20], Shangguan and Tamo show that explicit Reed–Solomon codes with exponentially
large field sizes can beat the Johnson bound.

• In [BKR10], Ben-Sasson et al. show limitations on the list decoding of Reed-Solomon codes
which uses all field elements in their evaluations.

• In [DGKS08], Dinur et al. show decodability of group homomorphism codes beyond the
Johnson bound.

Open Problem 8.1. Reduce the field size to explicit Reed-Solomon codes beating the Johnson
bound and improving on [ST20].

9 Beating the Gilbert–Varshamov Bound

The Gilbert–Varshmov (GV) bound [Gil52, Var57] is a trade-off between distance and rate of code
achieved by random codes. For every q ≥ 49, algebraic geometry codes are known beating the GV
for some distance interval. This is established by Tsfasman-Vladut-Zink bound [Sti08, Chapter 8].

10 Handling Insertion/Deletions

Naturally, the error model crucially determines the nature of the code. To handle insertions and
deletions completely different constructions are needed (with some built-in notions of varying sym-
bol “frequency” to implicitly give a spatial anchoring of symbols).

• In [GHS20], Guruswami et al. design optimally resilient codes for list decoding from insertion
and deletions.

11 Hardness of Approximation and Coding Theory

A big consumer (and also producer) of coding theory results is the field of hardness of approxima-
tion. This is specially true for codes admitting some local property.

• In [BGH+12], Barak et al. use coding theoretic results to prove that the short-code graph is
a small set expander with high threshold rank.

• In [ALM+98], Arora et al. heavily use error correcting codes to prove the PCP theorem.

12 Hardness of Coding Theory Tasks

Several coding theory tasks can be computationally very hard in the worst-case such as decoding
and certifying the minimum distance.

• In [SV19], Stephens-Davidowitz and Vaikuntanathan obtain very strong hardness results for
coding theory tasks under the SETH.

Open Problem 12.1. How much can the SETH assumption of [SV19] be weakened?
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13 Codes for Distributed Storage

Coding schemes for distributed storage requires new insights and lead to nice combinatorics.

• In [KLR17], Kane–Lovett–Rao give alphabet lower bounds for a family of distributed storage
codes (maximally recoverable codes on a grid-like topology). Their proof uses a beautiful
representation theoretic argument.

14 Books

• Essential Coding Theory by Guruswami, Rudra and Sudan [GRS19].

• Algebraic Function Fields and Codes by Stichtenoth [Sti08].

• Introduction to Coding Theory by van Lint [vL99].
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