
List Decoding with Double Samplers

October 13, 2019

Contents

1 Samplers and Direct Product Codes 1
1.1 Samplers . 1
1.2 Codes on Samplers . 2

2 Double Samplers and High-Dimensional Expanders 2
2.1 Double Samplers . 2
2.2 Constructing Double Samplers . 3

3 Main Theorem Overview 4

4 Local List Decoding 5

5 Constructing the Constraint Graph 6

6 Solving the Unique Games Instance 9

7 Final Codeword Extraction 12

1 Samplers and Direct Product Codes

1.1 Samplers

We will give a general overview of the algorithm of Dinur, Harsha, Kaufman, Navon, and Ta-
Shma for list decoding direct product codes constructed using double samplers [2]. Before we can
formulate the decoding problem and state their result, we need to define the notion of a double
sampler, and there’s no better way to start discussing double samplers than with the definition of
plain old samplers.

Definition 1.1 (Sampler). Let G = (V1, V0, E) be a bipartite graph with a distribution Π1 on V1.
Define Π0 as the distribution on V0 obtained by sampling v1 ∈ V1 according to Π1, then taking
v0 ∈ V0 to be a random neighbor of v1. We say that G is an (α, δ)-sampler if for any function
f : V0 → [0, 1],

Pr
v∼Π1

[∣∣∣∣ Eu∼v[f(u)]− E
u∼Π0

[f(u)]

∣∣∣∣ ≥ α] ≤ δ
1

Put another way, for all but δ fraction of vertices v ∈ V1, the local expectation of f over the
neighborhood of v differs from the global expectation of f over all of V0 by at most α. We will
generally think of samplers as inclusion graphs, where the vertices in V1 are identified with their
neighborhoods and the edges represent containment.

1.2 Codes on Samplers

Samplers can be used to amplify the minimum distance of an error-correcting code. Let G be a
bipartite inclusion graph with V0 = [n] and V1 ⊆

(
[n]
m1

)
, and let C ⊆ {0, 1}n be a code. For every

word x ∈ C, we can create a new word by placing the restriction x|S ∈ {0, 1}S on each vertex
S ∈ V1 and defining EncG(x) = (x|S)S∈V1 . Note that EncG(x) is a string over the larger alphabet
{0, 1}m1 of length |V1|. Performing this process on every x ∈ C, we obtain the direct product code
EncG(C) = {EncG(x) | x ∈ C}. It is not difficult to see from the sampler definition above that if
G is an (α, δ) sampler and C has minimum distance at least α, the minimum distance of the new
code EncG(C) is 1− δ.

The direct product encoding EncG(C) on a sampler lends itself to a simple decoding algorithm.
Given a received word (fS)S∈V1 on the V1 layer, we want to find the word x ∈ C that minimizes
the distance between EncG(x) and (fS). We can do so by letting each bit yi be determined by the
majority vote of the sets containing the vertex i ∈ [n], taking yi = MajS3i(fS(i)). Then x ∈ C is
obtained by running the unique decoding algorithm for C on y. If G is a good sampler and C has a
sufficiently large unique decoding radius, this process will recover x from error rates of almost 1/2.

If we try to extend the majority decoding algorithm for EncG(C) into the list decoding regime
of error rates beyond 1/2, we will very quickly run into issues. Once the error rate is greater than
1/2, more than half of the sets S ∈ V1 containing a typical vertex i ∈ [n] will have errors, meaning
there is no longer a guarantee that the majority will be correct most of the time. In order to break
past the 1/2 barrier, we need to employ graphs with much more structure than mere samplers.

2 Double Samplers and High-Dimensional Expanders

2.1 Double Samplers

To develop a list decoding algorithm for the direct product code, we extend the sampler by adding
an additional level V2 ⊆

(
[n]
m2

)
to the graph with m2 > m1. Note that the original code still

corresponds to the V0 level, and encoding is still done on the V1 level; the new V2 level will only
be used to assist with decoding. We require the tripartite inclusion graph X = (V2, V1, V0) to be a
double sampler consisting of two layers of samplers plus a bonus locality property:

Definition 2.1 (Double sampler). Let X = (V2, V1, V0) be an inclusion graph with a distribution
W on V2. Define a joint distribution Π on (v2, v1, v0) ∈ V2 × V1 × V0 by sampling v2 according to
W , then letting v1 be a random neighbor of v2 and v0 be a random neighbor of v1. Let Πi be the
marginal distribution of Π on Vi for i ∈ {0, 1, 2}.

The pair (X,W) is an ((α2,1, δ2,1), (α1,0, δ1,0), (αlocal, δlocal)) double sampler if

• The bipartite graph between V2 and V1 with distribution Π2 on V2 is an (α2,1, δ2,1) sampler.

• The bipartite graph between V1 and V0 with distribution Π1 on V1 is an (α1,0, δ1,0) sampler.

2

• For each T ∈ V2, let X|T be the inclusion graph between sets in V1 contained in T and elements
of V0 contained in T . Each graph XT with a uniform distribution on {S ∈ V1 | S ⊆ T} must
be an (αlocal, δlocal) sampler.

For a code C on {0, 1}V0 , EncX(C) will denote the direct sum encoding of C on the V1 level
of X. In broad terms, the advantage of using a double sampler to decode EncX(C) is that it will
allow us to first list decode the direct product code locally on all of the samplers X|T , then stitch
all of the local views together to obtain a list of words in {0, 1}V0 .

2.2 Constructing Double Samplers

Samplers with |V1| = O(n) are not too hard to come by—taking the elements of V1 to be random
subsets of [n] of size m will result in a good sampler with high probability. To get explicit samplers,
spectral expansion is sufficient to guarantee sampling properties.

Claim 2.2. A bipartite weighted graph with second eigenvalue λ is an (α, λ
2

α2) sampler.

Proof. This essentially follows from a variation of the expander mixing lemma; see [2] for details.

Finding a double sampler where V1 and V2 have linear size is a much taller order. Random
graph models will no longer cut it; the only known construction of a double sampler is via high-
dimensional expanders. Dinur and Kaufman [3] define the notion of a γ-HDX and describe its
spectral properties. We can extract a double sampler from a γ-HDX by restricting to faces of
three different dimensions, taking V2 = X(m2 − 1), V1 = X(m1 − 1), and V0 = X(0), each with
the corresponding distributions from the high-dimensional expander. By choosing γ, m1, and m2

appropriately, we can obtain double samplers with arbitrarily small parameters.

Theorem 2.3. For every α2,1, δ2,1, α1,0, δ1,0, αlocal, δlocal > 0, there exist D,m1,m2 ∈ N and a
family of explicit double samplers (Xn,Wn) for infinitely many n such that

• Xn is an inclusion graph (V2, V1, V0) with |V0| = n, V1 ⊆
(
V0
m1

)
, and V2 ⊆

(
V0
m2

)
, with distribu-

tion Wn over V2.

• Xn is an ((α2,1, δ2,1), (α1,0, δ1,0), (αlocal, δlocal)) double sampler.

• |V1|, |V2| ≤ Dn

Proof. Let V2 = X(m2 − 1), V1 = X(m1 − 1), and V0 = X(0), where X is a γ-HDX of dimension
d ≥ m2 − 1 and the parameters D, m1, and m2 will be determined later. The distribution Wn will
be the distribution on V2 from the high-dimensional expander. Dinur and Kaufman [3] offer the
following bounds:

• The graph G1,0 between V1 and V0 has λ(G1,0)2 ≤ 1
m1

+O(m1γ).

• The graph G2,1 between V2 and V1 has λ(G2,1)2 ≤ m1
m2

+O(m1m2γ).

From Claim 2.2, we know that a second eigenvalue of λ < α
√
δ is enough to get an (α, δ) sampler.

Combining this fact with the bounds above, we choose m1 > 2/α2
1,0δ1,0, m2 = m1/α

2
2,1δ2,1, and

γ < 1/m2
1m

2
2 to ensure that λ(G1,0)2 < α2

1,0δ1,0 and λ(G2,1) < α2
2,1δ2,1. The local sampling property

comes from the downward closure of the high-dimensional expander, which makes X|T a complete
bipartite graph for all T ∈ V2. (This also requires us to enforce m1 > 2/α2

localδlocal.) Finally, the

bound on the size of V1 and V2 comes from the construction of the γ-HDX, withD ≤ exp(m
O(1)
2).

3

The double sampler X comes equipped with distributions Π0 and Π1 on the V0 and V1 layers.
The codes C and EncX(C) that we place on these two layers of X have no weights on the entries
of their codewords; we would need Π0 and Π1 to be uniform in order to have the vertices of X
correspond to positions in these two codes. Fortunately, the distributions on the double sampler
taken from a γ-HDX in Theorem 2.3 have some very helpful properties. It can be shown that X
is regular, meaning Π0 is uniform on V0 and is uniform on each T when we condition on Π2 = T .
The distribution Π1, while not uniform, has the property of being D-flat, meaning the probability
it assigns to each vertex of V1 can only be one of the D possible values 1

R , 2
R , . . . , D

R . Thus we can
make Π1 uniform by duplicating each vertex in V1 the appropriate number of times (at most D).

3 Main Theorem Overview

With double samplers in hand, we can now state the main theorem describing the decoding algo-
rithm for the direct product construction.

Theorem 3.1. Let ε0, ε > 0. Let X be a double sampler with parameters α2,1 = ε2
010−5, δ2,1 =

ε0
200c

−8/ε, αlocal = ε0
2010−8/ε, and δlocal = ε0

200c
−8/ε, where c is an absolute constant. Suppose C ⊆

{0, 1}|V0| is a code that can be efficiently decoded from up to ε0 fraction of errors. Then the direct
product encoding EncX(C) ⊆ Σ|V1| with alphabet Σ = {0, 1}m1 has a poly(|V0|) time algorithm that
returns a list of size ≤ 8

ε of all codewords at distance 1− ε from a received word in Σ|V1|.

We will examine the choice of parameters more closely in Section 7. For now, we only point out
that Theorem 2.3 can be used to construct a double sampler X with the stated parameters and
|V1|, |V2| ≤ D|V0| for some D which is doubly exponential in 1/ε.

The list decoding problem can be stated as follows. The input is a received word (fS)S∈V1 ∈ ΣV1 ,
and we have a guarantee that at least one function g : V0 → {0, 1} in the base code exists such
that PrS∈V1 [fS = g|S] ≥ ε. Our task is to find all such functions g that agree with f on at least ε
fraction of the sets in V1.

The list decoding algorithm will begin by creating a local list LT ⊆ {0, 1}T for each vertex T ∈ V2

containing every assignment with at least ε
2 agreement with f on the sets {S ∈ V1 | S ⊆ T}. In

Section 4, we will describe how to prune these down to lists of bounded size where every assignment
with at least ε agreement on subsets of T is at least very close to something on the list.

The next task is to combine the local assignments for different T into a list of global assignments
g : V0 → {0, 1}. This will be done by constructing a new graph on V2 where two sets T1, T2 are
adjacent if they have an intersection large enough to contain at least one set S ∈ V1. The local lists
will be used to define a unique games instance on this graph where elements σ ∈ LT1 and σ′ ∈ LT2
are matched in a constraint if they have a strong agreement on some S ⊆ T1∩T2. We will find a large
subgraph of this graph which is an expander (Section 5) and then run an algorithm which outputs
a list of essentially all approximate solutions to this unique games instance (Section 6). Finally, we
obtain one word g for each unique games solution by choosing a random T ∈ V2 containing each
i ∈ V0, then letting the bit g(i) be determined by the local assignment σ ∈ LT chosen by the unique
games solution. The unique decoding algorithm of C is then run on g to fix any accumulated errors.

4

4 Local List Decoding

Each vertex T ∈ V2 induces a local view of the code EncX(C) consisting of all S ∈ V1 that are
subsets of T . The nice thing about the local views is that each T has a constant size, so we can
obtain a list of all assignments σ ∈ {0, 1}T that exhibit some agreement with (fS)S⊆T by brute
force.

However, these raw lists of local assignments will not be sufficient for merging into global
solutions. It is possible that a list will contain several local assignments that are very close to each
other corresponding to the same global solution, and this will cause problems down the line when
we try to match up solutions between different T to define a unique games instance. To get around
this issue, we prune the lists to ensure that the entries have some distance between them.

Lemma 4.1. Let ρ = ε0
2 10−8/ε. For every T ∈ V2, there is a radius rT ∈ {ρ10i | i ∈ {0, . . . , b8

εc}}
such that we can construct a list LT ⊆ {0, 1}T satisfying the following properties:

• (Small list size) |LT | ≤ 8
ε

• (Covering) If g : T → {0, 1} agrees with f on at least ε
2 fraction of sets S ⊆ T , then there

exists a σ ∈ LT with ∆T (σ, g) ≤ rT
9 .

• (Separation) For all σ, σ′ ∈ LT , ∆T (σ, σ′) ≥ rT .

where ∆T denotes the fractional Hamming distance on T : ∆T (σ, σ′) = 1
|T | |{j | σ(j) 6= σ′(j)}|.

The pruning algorithm is as follows. We start by assigning i = 0, r0 = ρ, and L0 = {σ ∈
{0, 1}T | PrS⊆T [fS = σ|S] ≥ ε

2}. Then repeat:

1. Find a maximum set Li+1 ⊆ Li with a distance of at least ri between all elements.

2. If Li+1 = Li, terminate the algorithm and output LT = Li, rT = ri.

3. Let ri+1 = 10ri, i = i+ 1 and loop.

The separation property of the list returned from this algorithm is obvious. It takes a little bit
more work to prove the other two properties in Lemma 4.1.

Lemma 4.2. The list returned from the pruning algorithm has size |LT | ≤ 8
ε .

Proof. Let `1 = |L1|. We will show that `1 ≤ 8
ε . Fix σ 6= σ′ ∈ L1 and define B = {j ∈ T | σj 6= σ′j}.

After the first pruning step, we have

Pr
i∈T

[i ∈ B] = ∆T (σ, σ′) ≥ ρ =
ε0

2
10−8/ε > αlocal

Let A = {S ∈ V1 | S ⊆ T, fS = σ|S = σ′|S}. Every S ∈ A is disjoint from B by definition. The
sampling properties of X|T ensure that

Pr
S⊆T

[fS = σ|S = σ′|S] = Pr
S⊆T

[S ∈ A] ≤ δlocal

5

For every L̂1 ⊆ L1 of size ` ≤ `1, we can compute

1 ≥ Pr
S⊆T

[∃σ ∈ L̂1 such that fS = σ|S]

≥
∑
σ∈L̂1

Pr
S⊆T

[fS = σ|S]−
∑

σ 6=σ′∈L̂1

Pr
S⊆T

[fS = σ|S = σ′|S]

≥ `ε
2
− `2 δlocal

2

Rearranging, `2 δlocal2 − ` ε2 + 1 ≥ 0 for all 0 ≤ ` ≤ `1. The polynomial x2 δlocal
2 − x ε2 + 1 has two

real roots, and since it takes positive values for x ≤ `1, both solutions must be greater than `1.
Thus `1 is less than the smaller root of this polynomial:

`1 ≤
1

δlocal

(
ε

2
−
√
ε2

4
− 2δlocal

)
=

1

δlocal

(ε
2

)(
1−

√
1− 8

ε2
δlocal

)
≤ 8

ε

Bounding the list size also ensures that the pruning algorithm will terminate after no more than
8/ε iterations. As the final step for the proof of Lemma 4.1, we verify the covering property.

Lemma 4.3. If g : T → {0, 1} agrees with f on at least ε
2 fraction of sets S ⊆ T , then there exists

a σ ∈ LT with ∆T (σ, g) ≤ rT
9 .

Proof. Fix such a g, which is in the initial list L0 by definition. Let σ0 = g and σi be the element
of Li closest to σi−1. Suppose the algorithm runs for K iterations, so that σK is in the final list
LT . At each step, σi−1 is either equal to σi or is removed due to being too close to some other σi;
either way, we have ∆T (σi−1, σi) < ri−1. Hence

∆T (σK , g) = ∆T (σ0, σK) ≤
K∑
i=1

∆T (σi−1, σi) ≤
K∑
i=1

ri−1 = rK

K∑
i=1

10i−K−1 ≤ rK
9

=
rT
9

5 Constructing the Constraint Graph

Now that we have processed the local lists appropriately, the next order of business is to identify
local assignments on different lists corresponding to the same global assignment. For each T ∈ V2,
we have a list LT of assignments satisfying all three properties in Lemma 4.1 for some radius rT .
Pad each list to exactly ` = b8/εc entries by adding dummy strings if necessary.

We will match up solutions between lists by constructing a unique games instance on a new
graph GC with vertex set V2. Place an edge between T1, T2 ∈ V2 if there is an S ∈ V1 with
S ⊆ T1 ∩ T2, and assign edge weights according to the distribution obtained by taking a random
S ∼ Π1, then independently sampling T1 and T2 uniformly from the set of elements of V2 containing
S. The resulting graph GC is known as the two-step walk graph for the sampler between V1 and
V2.

The set of labels at each vertex T is LT , the idea being that a solution to the unique games
instance will give us a mostly consistent choice of one assignment for each T . The constraint π at
an edge {T1, T2} will be constructed as follows:

6

1. Let S, T1, T2 be the random variables defined by sampling S ∼ Π1, then letting T1, T2 be
random elements of V2 containing S. Choose S ⊆ T1 ∩ T2 according to the distribution
(S | T1 = T1, T2 = T2).

2. For each σ ∈ LT1 , set π(σ) = σ′ if there is an unmatched σ′ ∈ LT2 with ∆S(σ, σ′) ≤ rT1
2 .

3. Match all remaining σ ∈ LT1 arbitrarily.

Ideally, labels matched by the constraints will accurately reflect the idea that these two local
assignments came from the same global assignment. This is formalized in the definition of a
constraint being “correct” with respect to a global assignment. For the rest of this section, fix such
an assignment g : V0 → {0, 1} with PrS [fS = g|S] ≥ ε.

Definition 5.1 (Correct constraint). For T ∈ V2, let C(T) indicate the entry of LT closest to g|T
(or an arbitrary one of these entries in the case of a tie). The constraint π is correct with respect
to g on the edge {T1, T2} if ∆T1(C(T1), g) ≤ rT1

9 , ∆T2(C(T2), g) ≤ rT2
9 , and π(C(T1)) = T2.

We seek a large subgraph of GC where almost all of the edges have correct constraints, so that
solving the unique games instance on this subgraph actually will give us a mostly consistent choice
of local assignments.

Lemma 5.2. For i ∈ [`], let V
(i)
C = {T ∈ V2 | rT = ρ10i} and G

(i)
C be the subgraph of GC induced by

V
(i)
C . With high probability over the choices of sets S used to create the constraints, there exists an

i ∈ [`] such that PrT∼Π2 [T ∈ V (i)
C] ≥ ε

16 = 1
2` and almost all edges of G

(i)
C have correct constraints:

Pr
T1,T2

[π{T1,T2} is correct | {T1, T2} ∈ E(G
(i)
C)] ≥ 1− 10δ1,2 − 10`δlocal

In order to prove Lemma 5.2, we’ll need a few more definitions.

Definition 5.3. A vertex T ∈ V2 is good if there is a σ ∈ LT with ∆T (σ, g) ≤ rT
9 .

Definition 5.4. A pair (S, T) with S ∈ V1, T ∈ V2, and S ⊆ T is good if T is a good vertex,
∆S(C(T), g) ≤ rT

4 , and ∆S(σ, g) ≥ 3rT
4 for all σ ∈ LT other than C(T).

Good pairs (S, T1) and (S, T2) will ensure that the our process of choosing the constraints will
produce a correct constraint on the edge between T1 and T2.

Lemma 5.5. Let T1, T2 ∈ V2 with rT1 = rT2, and suppose S ⊆ T1 ∩ T2 is the subset used to create
the constraint π on the edge {T1, T2}. If (S, T1) and (S, T2) are both good, then π is correct.

Proof. Set r = rT1 = rT2 , σ1 = C(T1), and σ2 = C(T2). We know that T1 and T2 are both good, so
∆T1(σ1, g) ≤ r

9 and ∆T2(σ2, g) ≤ r
9 . To finish showing that π is correct, we need only show that the

algorithm used to create π will match σ1 with σ2. The pairs (S, T1) and (S, T2) being good tells us
that ∆S(σ1, g) and ∆S(σ2, g) are both less than or equal to r

4 . By the triangle inequality,

∆S(σ1, σ2) ≤ ∆S(σ1, g) + ∆S(σ2, g) ≤ r

4
+
r

4
=
r

2

so σ1 will be matched with σ2 if it is available. For any σ′ 6= σ1 on the list LT1 , we have ∆S(σ′, g) >
3r
4 from (S, T1) being a good pair. Then

∆S(σ′, σ2) ≥ ∆S(σ′, g)−∆S(σ2, g) >
3r

4
− r

4
=
r

2

7

so no other σ′ ∈ LT1 will be matched with σ2. A symmetric argument shows that σ1 can’t be
matched with any other element of LT2 , so we do indeed end up with π(σ1) = σ2.

The task of obtaining the large subgraph of GC with correct constraints in Lemma 5.2 is thus
reduced to showing that most pairs (S, T) are good, which is where we will next turn our attention.
This will come from the sampling properties of X.

Claim 5.6. PrT∼Π2 [T is good] ≥ 1− δ1,2

Proof. Let B = {S ∈ V1 | fS = g|S} and A = {T ∈ V2 | PrS∼Π1|S⊆T [S ∈ B] < ε
2}. By definition of

g we have PrS∼Π1 [S ∈ B] ≥ ε. The parameters of X are chosen so that the graph between the V1

and V2 layers is an (ε2 , δ1,2) sampler, which ensures that PrT∼Π2 [T ∈ A] ≤ δ1,2. If T /∈ A, then there
exists a σ ∈ LT such that ∆T (σ, g) ≤ rT

9 from the covering property of the list LT (Lemma 4.1),
which is the condition for T to be good.

Claim 5.7. Pr(S,T)∼(Π1,Π2)[(S, T) is good] ≥ 1− δ1,2 − `δlocal

Proof. Fix a good vertex T ∈ V2 and let σ = C(T). We will be using the restriction X|T , which is
an (αlocal, δlocal) sampler. Let U = {S ∈ V1 | S ⊆ T}. Define the sets B = {i ∈ T | σi 6= gi} and
A = {S ∈ U | Pri∈S [i ∈ B] > rT

4 }. As T is good, Pri∈T [i ∈ B] ≤ rT
9 (recalling that the distribution

of i is uniform over T thanks to the regularity of X). Since αlocal ≤ ρ
9 ≤

rT
9 , we have

Pr
S⊆T

[
∆S(σ, g) >

rT
4

]
= Pr

S⊆T
[S ∈ A] ≤ δlocal

which is the second condition for (S, T) to be good.
For the third condition, let σ′ 6= σ be some other element of LT and define Bσ′ = {i ∈ T |

σ′i 6= g(i)} and Aσ′ = {S ∈ U | Pri∈S [i ∈ Bσ′] ≤ 3rT
4 }. By the separation property of LT from

Lemma 4.1, ∆T (σ, σ′) ≥ rT , and hence

Pr
i∈T

[i ∈ Bσ′] = ∆T (σ′, g) ≥ ∆T (σ, σ′)−∆T (σ, g) ≥ 8rT
9

Using the (rT9 , δlocal) sampling of X|T once again,

Pr
S⊆T

[
∆S(σ′, g) ≤ 3rT

4

]
= Pr

S⊆T
[S ∈ Aσ′] ≤ δlocal

Overall, for (S, T) to be a good pair, we require that T be a good vertex, S /∈ A, and S /∈ Aσ′

for all σ′ 6= σ. These events occur together with probability at least 1− δ1,2 − `δlocal by Claim 5.6
and the union bound.

We finally have all of the ingredients necessary to prove Lemma 5.2. Recall that V
(i)
C is the set

of vertices of GC with list radius rT = ρ10i.

Proof of Lemma 5.2. For each i ∈ [`], let

p(i) = Pr
(S,T)∼(Π1,Π2)

[(S, T) is good | T ∈ V (i)
C]

8

Let η = δ1,2 + `δlocal. Claim 5.7 tells us

1− η ≤ Pr
(S,T)∼(Π1,Π2)

[(S, T) is good] =
∑̀
i=1

Pr
T∼Π2

[T ∈ V (i)
C]p(i)

Splitting the sum between “high-weight” sets V
(i)
C with weight at least 1/2` according to Π2 and

“low-weight” ones with weight less than 1/2`,

1− η ≤
∑

i:µ(V
(i)
C)≥1/2`

µ(V
(i)
C)p(i) +

∑
i:µ(V

(i)
C)<1/2`

µ(V
(i)
C)p(i)

The total weight of all low-weight V
(i)
C is at most `(1/2`) = 1/2. In order for the (weighted) average

value of p(i) over all i to be greater than 1− η, the average value of p(i) over high-weight sets must

be at least 1− 2η. Thus there is at least one i with µ(V
(i)
C) ≥ 1/2` and p(i) ≥ 1− 2η. Restricting

to the grpah induced by V
(i)
C for such an i, we have

Pr
(T1,T2,S)∼(T1,T2,S)

[(S, T1) and (S, T2) are both good | T1, T2 ∈ V (i)
C] ≥ 1− 4η

which is the same as the probability of π being a good constraint by Lemma 5.5. To pass from each
constraint having a high probability of being correct to guaranteeing a large proportion of correct
constraints, we can use the Hoeffding inequality to show that at least 1 − 8η constraints will be
satisfied with probability at least 1− ec′n for some constant c′.

In order to efficiently solve the unique games instance on the restriction G
(i)
C of GC to the set

V
(i)
C , we need it to be an expander. Unfortunately this won’t necessarily be the case, but we can

use the following theorem to find a subgraph of G
(i)
C that exhibits some expansion.

Theorem 5.8. Let α, β, δ ∈ (0, 1) satisfy α, δ < β2

100 . Suppose G is an (α, δ) sampler with vertex
sets V1 and V2, and let G′ be the two-step walk graph of G. Let A ⊆ V2 be a subset with µG(A) ≥ β.
Then there exists a B ⊆ A with µG(B) ≥ β

4 such that the induced graph of G′ on B has second
eigenvalue (in absolute value) λ(G′) ≤ 99

100 .

The proof of this theorem can be found in Appendix A of [2]. For our purposes, we have

β = ε
16 , so we require

√
α2,1 and

√
δ2,1 to be less than ε

160 . We obtain a subgraph Gi of G
(i)
C with

PrT∼Π2 [T ∈ V (Gi)] ≥ ε
64 and λ(Gi) ≤ 99

100 . This is the graph on which we will solve the unique
games instance.

6 Solving the Unique Games Instance

The first technique for solving unique games on an expander in polynomial time was demonstrated
by Arora et. al. in [1]. We will be using a modified version of the approximation algorithm of
Makarychev and Makarychev [4], which given a unique games instance on a regular graph G with
1 − δ fraction of constraints satisfiable for δ ≤ c′λG, returns a solution with 1 − C δ

hG
constraints

satisfied, where λG is the second-smallest eigenvalue of the Laplacian of G and hG is the edge
expansion of G. The algorithm will be extended in two different ways: generalizing it to weighted,
non-regular graphs and outputting a list representing all of the high-value assignments instead of
just one.

9

Lemma 6.1. Let G = (V,E) be a graph with edge weights W = {we}e∈E and λ(G) ≤ 0.99. Let
{πe}e∈E be the set of unique constraints over the edges, with ` labels. Then there exists a constant
c and a polynomial time approximation algorithm that outputs a list of assignments {a(1), . . . , a(t)},
a(i) : V → [`], such that for every assignment a : V → [`] satisfying at least 1− η of the constraints,
there exists an a(i) on the list with Prv∈V [a(v) = a(i)(v)] ≥ 1− ηc`.

Extending the algorithm of [4] to weighted graphs takes quite a bit of work; see Appendix B
of [2] for details. We will be focusing on how to generate the list of assignments, which will be
accomplished with the following algorithm.

Start with i = 1 and π
(1)
e = πe for every edge e ∈ E. Then repeat:

1. Run the unique games algorithm from [4] on the graph G with constraints {π(i)
e }e∈E . Note

that the algorithm will find an approximate solution if at least 1 − c′λG ≥ 1 − 100c′ of the
constraints are satisfiable.

2. If this algorithm didn’t find an approximate solution, terminate.

3. Otherwise, add the output a(i) : V → [`− i+ 1] to the list of solutions.

4. Update the constraints on j = `− i+ 1 labels to {π(i+1)
e }e∈E on j − 1 labels by removing the

solution a(i). This is accomplished by reordering the labels at every vertex v so that a(v) = j.
If π is a satisfied constraint (π(j) = j), the new constraint π′ at that edge will be π restricted
to [j − 1]. If π is unsatisfied, then π(k1) = j and π(j) = k2 for some k1, k2 6= j. Define the
new constraint π′ by making it identical to π except for π′(k1) = k2.

5. Increment i by 1 and loop.

The key to this algorithm’s success is the observation that any two approximate solutions to
the unique games instance must either be very similar to each other or very different.

Claim 6.2. Let a, a′ : V → [`] be two assignments satisfying 1 − η and 1 − η′ of the constraints
on the edges of G, respectively. Then either Prv∈V [a(v) = a′(v)] ≥ 1− 50(η + η′) or Prv∈V [a(v) =
a′(v)] ≤ 50(η + η′).

Proof. Let D = {v ∈ V | a(v) 6= a′(v)} be the set of vertices on which a and a′ differ. Since the
constraints on the edges are unique, if a and a′ both satisfy an edge and agree at one endpoint of
that edge, they must also agree on the other endpoint. Thus any edges between D and V \D must
not be satisfied by a or a′, so µ(E(D,V \D)) ≤ η + η′. The second eigenvalue of G is at most 99

100 ,
so the Cheeger inequality implies the edge expansion of G is at least 1

50 . Then

min{µ(D), µ(V \D)} ≤ 50µ(E(D,V \D)) ≤ 50(η + η′)

from which the claim follows.

Let a : V → [`] be an assignment satisfying at least 1−η of the constraints. To prove Lemma 6.1,
we need to find an i such that a(i) is very close to a. Let

ηi = Pr
(u,v)∼W

[a(u) 6= π(i)
uv (a(v))]

be the fraction of constraints that are not satisfied by a during iteration i of the algorithm. Since
solutions that aren’t close have very little in common, we can show that removing every label chosen
by a solution a(i) in step 4 of the algorithm won’t affect a too much.

10

Claim 6.3. There exists a constant b > 1 such that if η < b−` and Pru∈V [a(u) = a(i)(u)] ≤ 1
2 for

all i ≤ j, then ηj+1 ≤ ηbj+1.

Proof. Induct on i. For the base case, a satisfies 1 − η of the original constraints {π(1)
e }e∈E by

definition. Assuming the claim holds for j− 1, the unique games instance with constraints π(j) will
have a solution satisfying 1− ηj of the constraints, where ηj < ηbj . Thus the algorithm will output
an assignment a(j) : V → [`− j + 1] satisfying at least 1− 50Cηj of the constraints.

Since Pru∈V [a(u) = a(j)(u)] ≤ 1
2 , we know from Claim 6.2 that this probability must be bounded

above by 50(ηj + 50Cηj). Observe that when the algorithm removes the labels selected by a(j),
the constraints are not changed except for the parts involving a(j)(u) for a vertex u ∈ V . This
means that any constraint πuv satisfied by a will only be affected by this removal if a(u) = a(j)(u)
or a(v) = a(j)(v). We can compute

ηj+1 = Pr
(u,v)∼W

[a(u) 6= π(j+1)
uv (v)]

≤ Pr
(u,v)∼W

[a does not satisfy π(j)
uv] + Pr

(u,v)∼W
[a satisfies πuv

(j), but not π(j+1)
uv]

≤ Pr
(u,v)∼W

[a(u) 6= π(j)
uv (v)] + Pr

(u,v)∼W
[a(u) = a(j)(u) or a(v) = a(j)(v)]

≤ ηj + 50(ηj + 50Cηj)

≤ 3000Cηbj

so the claim holds for b = max{3000C, 1
100c′ }.

Proof of Lemma 6.1. Let c = 2b. The claim is trivial if η ≥ c−`, so we may assume η < c−`.
Assume for the sake of contradiction that Pru∈V [a(u) = a(i)(u)] ≤ 1

2 for all i ∈ [t], where t is the
size of the list of solutions obtained from the algorithm.

If t < `, we have ηt+1 ≤ ηbt by Claim 6.3. The fraction of constraints {πt+1
e }e∈E satisfied by a

at iteration t+ 1 of the algorithm is

1− ηt+1 ≥ 1− ηbt ≥ 1− bt−` ≥ 1− 1

b
≥ 1− 100c′

so the unique games algorithm should have output a solution instead of terminating.
If t = `, every label at each vertex is used in exactly one assignment on the list; for every

u ∈ V , there is an i ∈ [`] with a(i)(u) = a(u). By Claim 6.3, we have ηi ≤ ηbi for every i ∈ [`].
Since Pru∈V [a(u) = a(i)(u)] ≤ 1

2 , this probability is less than or equal to 50(ηi + 50Cηi) ≤ bηi by
Claim 6.2. Hence

Pr
u∈V

[a(i)(u) = a(u) for some i ∈ [`]] ≤
∑̀
i=1

bηi ≤ η
∑̀
i=1

bi+1 ≤ 2ηb` ≤ ηc` < 1

which contradicts all of the labels being used.
As we obtained a contradiction in both cases, there must be a j ∈ [`] such that Pru∈V [a(u) =

a(j)(u)] > 1
2 . By Claim 6.2,

Pr
u∈V

[a(u) = a(j)(u)] ≥ 1− 50(ηj + 50Cηj) ≥ 1− bηj ≥ 1− ηc`

as desired.

11

7 Final Codeword Extraction

Applying the unique games algorithm of Lemma 6.1 to the expanding subgraph Gi and recalling
that the labels correspond to entries in the lists LT , we will receive a list of assignments a :

V (Gi) → {0, 1}m2 . As µGC
(V (Gi)) ≥ 1

4µGC
(V

(i)
C) by Theorem 5.8, the fraction of incorrect edges

in Gi increases by at most a factor of 4 from G
(i)
C . Taking η = 40(δ1,2 + `δlocal) (the maximum

fraction of incorrect edges) in Lemma 6.1 and using the definition of a correct edge, for any high-
agreement global assignment g : V0 → {0, 1} there is an assignment a returned by the unique games
algorithm satisfying

Pr
T∼Π2

[∆T (a(T), g) ≤ rT
9

] ≤ 1− c`40(δ1,2 + `δlocal)

For each assignment a on the list of unique games solutions, determine the jth bit of w ∈ {0, 1}V0
by choosing a random T ∼ Π2 conditioned on containing j and appearing as a vertex in Gi, then
letting wj = a(T)j . For the global assignment g corresponding to a, our choice of parameters
guarantees that

Pr
j∼Π0,T∼Π2|T3j

[wj 6= g(j)] ≤ rT
9

+ c`40(δ1,2 + `δlocal) ≤
ε0

2

Therefore ∆(w, g) ≤ ε0 with high probability, so running the unique decoding algorithm of the base
code C on w will produce g. Repeating the entire process multiple times, the probability of success
approaches 1. Decoding every entry on the list of unique games solutions in this way and taking
the direct product encoding of each of the results to get back up to the V1 level will produce the
list promised in Theorem 3.1.

References

[1] Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: Extended ab-
stract. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC
’08, pages 21–28, New York, NY, USA, 2008. ACM.

[2] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta Shma. List
decoding with double samplers. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’19, pages 2134–2153, Philadelphia, PA, USA, 2019. Society for
Industrial and Applied Mathematics.

[3] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages 974–985,
2017.

[4] Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders.
In Proceedings of the 8th International Conference on Approximation and Online Algorithms,
WAOA’10, pages 190–200, Berlin, Heidelberg, 2011. Springer-Verlag.

12

	Samplers and Direct Product Codes
	Samplers
	Codes on Samplers

	Double Samplers and High-Dimensional Expanders
	Double Samplers
	Constructing Double Samplers

	Main Theorem Overview
	Local List Decoding
	Constructing the Constraint Graph
	Solving the Unique Games Instance
	Final Codeword Extraction

