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1 Oppenheim’s Trickling-Down Theorem

A convenient way of certifying that a simplicial complex is a HDX is to show that the links of
co-dimension 2 are expanding and all other links of co-dimension 3 or higher are connected. This
sufficient condition for high-dimensional expansion was established by Oppenheim [1] and is now
commonly referred as Oppenheim’s trickling-down Theorem. Oppenheim’s result is similar in spirit
to the so-called Garland’s method and it is a manifestation of a local to global phenomenon. Here,
we follow the exposition of Yotam Dikstein from the HDX cluster at Simons.

Towards proving this sufficient condition a key result is the particular case of a simplicial
complex of dimension 2.

Theorem 1.1 (dimension two). Suppose X is a simplicial complex of dimension 2 endowed with
a measure Π2 on the top facets. If

(i) the second largest eigenvalue of every link Xv for v ∈ X(0) is bounded by λ, and

(ii) the underlying skeleton of X is connected,

then the skeleton has second largest eigenvalue bounded by λ/(1− λ).

We will need two simple results along the way and a bit of notation. For a simplicial complex
X and f : X(0)→ R, we denote the restriction f |Xv(0) by fv. Also, we denote by Av the adjacency
operator of the link of v ∈ X(0). The first result is “localization”, i.e., informally speaking it
captures local behavior at the links.

Claim 1.2 (localization). Let f, g : X(0)→ R. Then

(i) 〈f, g〉 = Ev∼X(0)f(v)g(v) = Ev∼X(0)Eu∼Xv(0)f(u)g(u),

(ii) 〈Af, g〉 = Ev∼X(0)〈Avfv, gv〉.

Proof. We start with the first item. Note that sampling a vertex v ∼ X(0) can be done equivalently
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by sampling an edge uv ∼ X(1) and then taking u or v with equal probability. Hence

Ev∼X(0)f(v)g(v) =
∑

uv∈X(1)

f(u)g(u)
1

2
Pr[uv] + f(v)g(v)

1

2
Pr[uv]

=
∑

v∈X(0)

∑
u∈Xv(0)

f(u)g(u)
1

2
Pr[uv] +

∑
u∈X(0)

∑
v∈Xv(0)

f(v)g(v)
1

2
Pr[uv]

=
1

2
Ev∼X(0)

∑
u∈Xv(0)

f(u)g(u) Pr[uv|v] +
1

2
Eu∼X(0)

∑
v∈Xu(0)

f(v)g(v) Pr[uv|u]

=
1

2
Ev∼X(0)Eu∼Xv(0)f(u)g(u) +

1

2
Eu∼X(0)Ev∼Xu(0)f(v)g(v)

= Ev∼X(0)Eu∼Xv(0)f(u)g(u).

Now, we proceed to check the second item. Recall that 〈Af, g〉 = Euv∼X(1)f(u)g(v). The compu-
tation is analogous but edges are replaced by triangles and vertices are replaced by edges.

Euv∼X(1)f(u)g(v) =
∑

uvw∈X(1)

f(u)g(v)
1

3
Pr[uvw] + f(u)g(w)

1

3
Pr[uvw] + f(v)g(w)

1

3
Pr[uvw].

For simplicity, we only consider the first term on the RHS above. We have∑
uvw∈X(1)

f(u)g(w) Pr[uvw] =
∑

v∈X(0)

∑
uw∈Xv(1)

f(u)g(w) Pr[uvw]

= Ev∼X(0)Euw∼Xv(1)f(u)g(w) = Ev∼X(0)〈Avfv, gv〉.

The second result relates the norms fv paralled to 1v with Af .

Claim 1.3 (recursion). Let f : X(0)→ R and f
‖
v = 〈fv,1v〉 · 1v for v ∈ X(0). Then

Ev∼X(0)〈f‖v , f‖v 〉 = 〈Af,Af〉.

Proof. First, observe that 〈fv,1v〉 = Eu∼Xv(0)fv(u) = (Af)(v). Thus,

Ev∼X(0)〈f‖v , f‖v 〉 = Ev∼X(0)(Af)(v)(Af)(v) = 〈Af,Af〉.

Now, we are ready to prove the key result.

Proof of 1.1. Take f ⊥ 1 such that 〈Af, f〉 = γ where γ is the second largest eigenvalue of A.
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Decompose fv as fv = f⊥v + f
‖
v where f

‖
v = 〈fv,1v〉 · 1v. We have

γ = 〈Af, f〉 = Ev∼X(0)〈Avfv, fv〉 (localization 1.2)

≤ Ev∼X(0)〈f‖v , f‖v 〉+ Ev∼X(0)λ〈f⊥v , f⊥v 〉

= Ev∼X(0)〈f‖v , f‖v 〉+ Ev∼X(0)λ〈fv − f‖v , fv − f‖v 〉

= (1− λ)Ev∼X(0)〈f‖v , f‖v 〉+ λEv∼X(0)〈fv, fv〉

= (1− λ)Ev∼X(0)〈f‖v , f‖v 〉+ λ〈f, f〉 (localization 1.2)

= (1− λ)〈Af,Af〉+ λ (recursion 1.3)

= (1− λ)γ2 + λ.

Note that γ = 1 and γ = λ/(1− λ) are the solutions of the quadratic equation γ = (1− λ)γ2 + λ.
Under our assumption that the skeleton is connected, we have γ < 1 and thus γ ≤ λ/(1− λ).

The general condition follows from a simple induction using 1.1.

Theorem 1.4 (Strong). Suppose X is a simplicial complex of dimension d ≥ 2 endowed with a
measure Πd on the top facets. If

(i) the second largest eigenvalue of every link XS for S ∈ X(d− 2) is bounded by λ, and

(ii) every link XS for S ∈ X(≤ d− 3) is connected,

then the skeleton has second largest eigenvalue bounded by λ/(1− (d− 1)λ).

Proof. Let λi = λ/(1− iλ). Using induction and 1.1, for i = 0, . . . , d− 2, we can upper bound the
second largest eigenvalue λi of links of co-dimension d− i+ 1 by

λi
1− λi

=
λ

1− iλ
1

1− λ/(1− iλ)
= λi+1.
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