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1 Oppenheim’s Trickling-Down Theorem

A convenient way of certifying that a simplicial complex is a HDX is to show that the links of
co-dimension 2 are expanding and all other links of co-dimension 3 or higher are connected. This
sufficient condition for high-dimensional expansion was established by Oppenheim [I] and is now
commonly referred as Oppenheim’s trickling-down Theorem. Oppenheim’s result is similar in spirit
to the so-called Garland’s method and it is a manifestation of a local to global phenomenon. Here,
we follow the exposition of Yotam Dikstein from the HDX cluster at Simons.

Towards proving this sufficient condition a key result is the particular case of a simplicial
complex of dimension 2.

Theorem 1.1 (dimension two). Suppose X is a simplicial complezx of dimension 2 endowed with
a measure Ils on the top facets. If

(i) the second largest eigenvalue of every link X, for v € X(0) is bounded by X\, and
(ii) the underlying skeleton of X is connected,
then the skeleton has second largest eigenvalue bounded by \/(1 — \).

We will need two simple results along the way and a bit of notation. For a simplicial complex
X and f: X(0) — R, we denote the restriction f|x, ) by fu. Also, we denote by A, the adjacency
operator of the link of v € X(0). The first result is “localization”, i.e., informally speaking it
captures local behavior at the links.

Claim 1.2 (localization). Let f,g: X(0) — R. Then
(i) {f,9) = Evox(0)f(v)9(v) = Evux0)Euvx, (o) f(1)g(u),
(ii) (Af,g) = IEvNX(()) (Avfo, Go)-

Proof. We start with the first item. Note that sampling a vertex v ~ X (0) can be done equivalently



by sampling an edge uv ~ X (1) and then taking u or v with equal probability. Hence

1
Eyx(0)f = Y flu Pr[uv]+f (v)g(v); Prluv]
uveX (1)
Z Z flu Pr [uv] Z Z flv Pr[uv]
veX(O) u€X,(0) ueX(O) vEX,(0)
= -Euox(0 Z fw)g(u) Prluv|v] + IEuNX Z f()g(v) Prluv|ul
uEXU(O) vEX,(0)
1

1
= S Eonx (0)Bunx, 00 f (@)9(w) + SEunx (0)Bonxu(0)f (0)9(v)

= By x(0)Eunx, (0)f (W) g(u).

Now, we proceed to check the second item. Recall that (Af,g) = Ey,ox1)f(u)g(v). The compu-
tation is analogous but edges are replaced by triangles and vertices are replaced by edges.

Brf090) = 32 1 )3 Prluwn] + f()g(w) Prluvw] + f(0)g(w)  Prluvu].

uvweX (1

For simplicity, we only consider the first term on the RHS above. We have
Z f(u)g(w) Prluvw] Z Z f(u)g(w) Prluvw]
uvweX (1) vEX(0) uweX, (1)

= By x(0) Buw~x, (1) f (W) g(w) = Eyox0)(Av fos Go)-

O
The second result relates the norms f, paralled to 1, with Af.
Claim 1.3 (recursion). Let f: X(0) — R and fll = (fo,1,) - 1, for v € X(0). Then
xo(f) 1) = (Af, Af).
Proof. First, observe that (f,,1,) = E,x,0)fo(u) = (Af)(v). Thus,
Eox(0) (/) 1) = Bonx(0) (AN (@) (Af) (v) = (A, Af).
O

Now, we are ready to prove the key result.

Proof of[1.1. Take f L 1 such that (Af, f) = v where 7 is the second largest eigenvalue of A.



Decompose f, as f, = fir + f1|,| where fqu‘ = (fu, 1) - 1,,. We have

= (Af, f) = Evax(0) <A fv, fo) (localization [1.2)
< Epoxo)(fl, £1) + Epox o)A £
= ]EUNX(O)< N+ Epox oMo — FIL fo — 1)
= (1= NEyx () (/) ,f”>+AE ~x(0)(for fo)

= (1= NE,x)(/f Ly £ X ) (localization [1.2)
=(1-A) <Af7 Af> + A (recursion
=(1=A7+ A\

Note that v =1 and v = A/(1 — \) are the solutions of the quadratic equation v = (1 — A)y2 + A.
Under our assumption that the skeleton is connected, we have v < 1 and thus vy < A/(1 —X). O

The general condition follows from a simple induction using

Theorem 1.4 (Strong). Suppose X is a simplicial complex of dimension d > 2 endowed with a
measure Il on the top facets. If

(i) the second largest eigenvalue of every link Xg for S € X(d — 2) is bounded by \, and
(ii) every link Xg for S € X(< d—3) is connected,
then the skeleton has second largest eigenvalue bounded by \/(1 — (d — 1)\).

Proof. Let \j = A\/(1 —i\). Using induction and fori=0,...,d — 2, we can upper bound the
second largest eigenvalue A; of links of co-dimension d — ¢ + 1 by
Xio A 1
I—X  1—dX1—=X/(1—14))

= Ait1-
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