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Abstract

This document collects the conjectures, questions and an exercise discussed in the first open
problem session of the high-dimensional expander cluster. Each section of the document starts
with the statement of the problem followed by definitions (if necessary) and a brief context. For
further and more precise details the reader is referred to the associated bibliography.

1 Problem (suggested by Nati Linial)

Conjecture 1.1 (Erdés Conjecture [8]). There exists STS with arbitrarily large girth.

Definition 1.1 (STS). A Steiner Triple System (STS) is a collection of triples that contain
every pair exactly once.

Example 1.1 (Fano Plane). The Fano plane is an example of STS.

Figure 1: Fano Plane.

Definition 1.2 (Girth). The girth of a STS is the smallest integer k > 4 such that there exists
some k vertices spanning > k — 2 faces (triples).

Theorem 1.2 (Kirkman [12]). There exists a Steiner triple system of order n if and only if
n=1,3 (mod 6).

Theorem 1.3 (Glock-Lo-Liihn-Osthus [9]). There exists partial STS of (1/6 —e)n? triples with
arbitrarily large girth.

*This notes were collected and edited with Siddharth Bhandari.



2 Problem (suggested by Nati Linial)

Conjecture 2.1 (Signing Conjecture [1] (Bilu and Linial)). Fvery d-reqular graph has a signing
with spectral radius < 2+/d — 1.

Definition 2.1 (Signing). Let Ag be the adjacency matriz of a d-regular graph G. A signing
Aq of Ag is a symmetric matriz (with entries in {—1,0,1}) satisfying (Ac)i; = |(Ag)i;

Definition 2.2 (2-lift ). Let G = (V, E) be a d-regular graph and let Ag be a signing of G. A
2-lift H = (V',E") of G is a graph on vertex set V' =V x [2] such that for each {u,v} € E we
connect:

o (u,1) to (v,1) and (u,2) to (v,2) if Ag(u,v) = +1

o (u,1) to (v,2) and (u,2) to (v,1) if Ag(u,v) = —1.
Definition 2.3 (Spectral Radius). Let A be a matriz. The spectral radius of A is the largest
singular value of A.

Remark 2.1. Spec(H) = Spec(G) U Spec(Ag).
Theorem 2.2 (Bilu and Linial [1]). Every d-regular graph has a signing with spectral radius

@) (\/glog?’/z(d)).

Theorem 2.3 (Marcus-Spielman-Srivastava [15]). Signing conjecture is true if the graph is
bipartite.

3 Problem (suggested by Elena Grigorescu)

Question 3.1. Is there a high-dimensional analogue of §-local expanders (that might be useful
for coding applications)?

Definition 3.1 (J-expander). (4, B) is a d-expander if for every X C A and'Y C B of relative
size § there exists an edge between X and Y .

For a directed acyclic graph (DAG) G = (V, E), we assume w.l.0.g. that V = [n] and the
standard order of the integers is a valid topological ordering of V.

Definition 3.2 (4-local expander). A DAG G = (V, E) is d-local expander if for every vertex
v €V, and every radius r (A=[v—r+1,v],B=[v+1,v+7]) is a d-expander.

Theorem 3.2 (Erdés-Graham-Szemerédi). For any § > 0, there exists a §-local expander on n
vertices with in/out degree O(log(n)).

In the works of Blocki et al. [3, 2], §-local expanders were used to obtain a “relaxed” notion
of locally correctable codes naturally named relaxed locally correctable codes (RLLC). In the
following, we present the gist of how d-local expanders arise in such constructions.

First, we need to introduce a special kind of hash function. Suppose H: {0,1}* — {0,1}*
is a collision resistant hash function (CRHF), i.e., for every probilistic polynomial time (PPT)
adversary A we have Pr[A witnesses H(z) = H(z')] is negligible.

Let G be a d-local expanding DAG on n vertices and m = my...m, € X" be a message.
Using m, we assign bit strings to the vertices of G obtaining a function £: V' — {0, 1}* as follows.
Fori=1...n,set {(v;) = H(m;ol(p1)o---0l(p.)) where {(p1)o---0f(p,) is the concatenation
of the strings assigned to the parents pi,...,p, of v in G. To encode the message we rely on a

LA 2-lift is particular case of a labeled extended graph with binary alphabet as studied in Computer Science in
the context of Unique Games.



good code that is efficiently decodable (e.g. Justesen code). Let Enc be the encoding function
of this good code. Then, m is encoded as

Enc(mq) - - - Enc(m,) Enc(é(v1))---Enc(é(v,)) Enc(f(vy,)) - - Enc(é(vy,))

Encoding using é-local expander Redundancy for £(v,,)

The analysis of the construction relies on the following property.

Definition 3.3 (a-good). Let S C V. We say that v € V is a-good with respect to S if for any
radius r
ISNv—r+1v)]<a-rand [SNv,o+r—1]|<a-r

4 Problem (suggested by Yuval Filmus)

Question 4.1. Grassmann-HDX? Known constructions of HDXs derived from [1/, 13] provide
sparse (linear number of hyperedges in the number of vertices) approzimations to the Johnson
scheme. How sparse can we make the Grassmann scheme while retaining some of its original
properties?

5 Problem (suggested by Yuval Filmus)

Question 5.1. What other properties of HDXs can be useful for applications (e.g., locally
CAT(0), modified log-sobolev inequality, etc...)? Can we go beyond link spectral expansion (c.f.

[6, 11, 4])?

6 Exercise (suggested by Yuval Filmus)

Exercise 6.1 ((x,*,x,...7)). Let X (k) be the collection of k-faces of a HDX with k = O(1).
Does X (k) support a (sound) agreement test with local functions of the form {fs: (<Sd) —

Ylsexm ?

Definition 6.1 (Agreement Test (Informal)). Pick a set T of size k/2 at random and two
extensions S1,So of size k at random. Accept iff fs,|sins. = fs,ls1n8,-

Theorem 6.2 (Dinur and Steurer [7] (DS)). If X is the complete complex and

Pr [f51|51ﬁ52 = f52‘51052] >1—¢
then there exists g: [n] — 3 such that Pr[fs = gls] > 1 — O(e).
Theorem 6.3 (Dinur and Kaufman [6]). If X is a HDX, then DS Theorem also holds.

Theorem 6.4 (Dinur-Filmus-Harsha [5]). If X is the complete complex, then DS Theorem holds
for local functions of the form {fs: (fd) — Y}sex(k)-

The Exercise 6.1 can be restated more succinctly as follows.

Exercise 6.5 (Restatement of Exercise 6.1). Can Theorem 6.4 be generalized to HDX?



7 Problem (suggested by Sai)

Question 7.1. Characterize (through HDX?)
o Cooperative repairs 2;

o Regenerating codes >.

Definition 7.1. We say that a linear code C has parameters [n, k, d], provided it is a code over
F, with block length n, dimension k and distance d.

Definition 7.2 (MDS code). A code [n, k,d], is called Maximum Distance Separable (MDS) if
d=n—-k+1.

Definition 7.3 (Vectorized MDS Code). Let C be a [n,k,d];, MDS code. We can obtain a
vectorized MDS code by replacing each symbol in F, by an £-length vector over IFy.

Consider the case in which a codeword ¢ ... ¢, € (Ff)n in a vectorized MDS from a [n, k, d],
MDS code is distributed among n machines so that the i-th machine stores ¢;. Suppose h < n—k
machines fail (h is typically a constant in applications) causing the erasure of c¢1,...,¢,. To
recover ci,...,cp two rounds of communication are established. In the first round, machines
h+1,...,n send symbols to the machines 1, ..., h. In the second round, machines 1, ..., h send
symbols to all 1,...,n machines. The topology of the communication network in each round is
depicted in Fig. 2. Note that it follows the structure of a complete bipartite graph (which can
be somewhat dense).

Question 7.2. Can HDXs be used to derandomize/sparsify the topology of the communication

network?
Ch+1 c1
\ . /
Ch+2 Cc2
ch :
Cn / \
Round 1 Round 2 | ¢n

Figure 2: Dense model of communication using complete bipartite graphs.

8 Problem (suggested by David Zuckerman)

Question 8.1. Is it possible to improve the expander mixing lemma for small sets? Can we
obtain explicit k-expanding d-regular graphs on n vertices with d = O(n/k).

We recall the expander mixing lemma (EML) next.

2See reference [17].
3See reference [10].



Lemma 8.2 (Expander Mixing Lemma). Let G = (V, E) be a d-regular graph on n vertices
with A = max(Ag, |A,|). For every S, T C 'V,

d
e(5.T) = SISIITI| < AVISTTT,

where e(S,T) = [{e={s,t} € E | se€ S,t € T}|.
Improving EML can be useful in the study of k-expanding graphs which is defined next 4.

Definition 8.1 (k-expanding graph). We say that a graph G = (V, E) is k-expanding provided
for every S, T C V with |S|,|T| > k there exists an edge {s,t} € E with s € S andt € T.

Fact 8.3. Random d-regular graphs with d = O (nlog(n/k)/k) are k-expanding.

Theorem 8.4 (Wigderson and Zuckerman [16]). There exists explicit k-expanding d-regular
graphs on n vertices with d = n“‘o(l)/k.

Remark 8.5. Harsha suggested that reverse hypercontractivity may be related to Question 8.1.
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