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1 Introduction

Roughly speaking, Probabilistically Checkable Proofs (PCPs) embody the study of “robust” com-
putation. More specifically, the classical PCP theorem gives a new “robust” interpretation to proof
verification in NP. It establishes that any NP proof can be carefully rewritten in a robust way (with
at most a polynomial size blow-up) such that for a probabilistic verifier it is enough to query only a
constant number of bits in this new robust proof to decide, with constant probability, the validity
of a statement. To implement this robustness, error correcting codes with certain local properties
and also expander graphs turned out to be very fruitful objects. From its very local view of the
proof (randomly chosen), the verifier has to deduce the correctness of a given statement. This gives
rise to the study of local-to-global phenomena embodied in so-called agreement tests.

Brute forcing over all possible local views a verifier can generate during its execution gives
rise to a constraint satisfaction problem (CSP). Thus, it is not hard to see that a PCP readily
implies hardness of approximation for CSPs (with constraints given by the verifier’s acceptance
rules). In fact, the development of tailored PCP theorems helped clarify large portions of the
intricate landscape of hardness of approximation [H̊as01]. However, the hardness of approximation
of many fundamental problems is still open. A noteworthy example being our beloved MaxCut
which is arguably one of the simplest kind of Max-CSPs. To patch our knowledge gap, a seemingly
restricted PCP known as Unique Games (UG) was proposed by Khot [Kho10]. Thanks to its more
restricted nature, it made UG handy in hardness reductions. Soon many unknown hardness of
approximation results were tied to UG-hardness. Therefore, the conjecture that UG is NP-hard to
approximate became an important open problem and its resolution has enjoyed great progress over
the years (with “evidence” going in both directions).

Another application of PCPs going beyond its initial 1 role in hardness of approximation is the
delegation/verification of computation. In this setting one might want to allow interactions between
a prorver and a verifier. If you submit a computational task to a powerful cloud (“the prover”),
you (“the verifier”) might want to check the computation was correctly performed without having
to recompute it yourself. A possible scenario is the following, we might want assume that the
cloud can perform arbitrary polynomial time computation (rather than having NP powers) and the
verifier is even more restricted but is allowed to ask questions to the cloud. This line of research
has enjoyed great progress and we have compelling reasons to make the PCP technology practically
viable. See the monograph on doubly-efficient interactive proof systems of Goldreich [Gol18].

1Strictly speaking interactive proof systems (which is a form of delegation of computation) came historically first,
but the initial bulk of applications came form the connection of PCP with hardness of approximation.
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Yet another fascinating direction of the PCP study emerged with the quantum computational
model. The CSP version of the quantum PCP conjecture is widely open and it seems to require
fundamentally new ideas.

2 Classical PCP

The proof of the PCP theorem comes in two main flavors: algebraic and combinatorial. They
appear in the following seminal works.

• In [ALM+98], Arora et al. use error correcting codes and composition to prove the PCP
theorem.

• In [Din06], Dinur use exapnders in an iterative procedure to amplify the gap of a CSP (“spread
the jam”) until it becomes constant.

A precursor of the PCP theorem for NP was a the equivalence of MIP = NEXP by Babai et
al. [BFL90]. It has motivating the scaling down race towards the PCP theorem for NP and it has
also influence the quantum development of NEXP ⊆ MIP∗ by Ito–Vidick [IV12].

2.1 Low Degree Test

Given a function purported to be the evaluation of low degree polynomial, how can we locally
certify this?

• In[Sud92], Sudan gives an account of low degree tests.

• In [Gol17, Chapter 3], Goldreich presents low degree tests.

2.2 Interactive Oracle Proofs

An important open question in the PCP literature is whether PCPs of linear length can be con-
structed. If one allows interaction in a model called Interactive Oracle Proofs (IOP), then Ben-
Sasson et al. [BCG+17] show that this is indeed possible. More recently, Ron-Zewi and Rothblum
showed the size blow-up constant can be made arbitrarily close to 1.

2.3 Derandomization

In [AB19], Aharonov and Grilo show that a PCP for MA (suitably defined) would imply MA=NP.

3 Unique Games

The Unique Games Conjecture asserts that for every ε > 0 there exists a sufficiently large alphabet
size q ∈ N such that distinguishing whether a 2-CSP with permutation constraints on alphabet [q]
is at least 1− ε satisfiable or at most ε satisfiable is NP-hard.

• In [DKK+18a, DKK+18b], Dinur et al. describe an efficient reduction from gap-3LIN to 2-to-
1 games and explore non-expanding structures of the Grassmann graph to study its hardness.
Combined with Barak et al. [BKS19], this gives a full proof of the 2-to-1 Conjecture.
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4 Quantum PCP

In the classical setting, the proof verfication, CSP and multiprover versions of PCPs are equivalent.
However, in the quantum setting this is no longer true. The multiprover version with entangled
provers turned out to be surprisingly more powerful this was shown in a sequence of results that
culminated in the impressive MIP∗ = RE result by Ji et al. [JNV+20]. Fortunately, the quantum
“CSP” version known as Quantum local-Halmitonian PCP is still a widely open conjecture. Its
resolution might involve better understanding of quantum codes/states.

• An older survey of the quantum PCP Conjecture by Aharonov et al. [AAV13] (some break-
throughs afterwards).

• In [AALV09], Aharonov et al. introduce the detectability lemma to analyze the structure
of frustation free Hamiltonians (analog CSPs with perfect completeness) and design a Dinur
style gap amplification procedure. See Anshu et al. [AAV16] for a simplified proof.

• In [EKZ20], Evra et al. use HDXs to design LDPC quantum codes beyond
√
n distance. One

can ask if their ideas have any PCP application.
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