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1 Introduction

Roughly speaking, the Sum-of-Squares (SOS) hierarchy is a semi-definite programming hierarchy to
reason about polynomial optimization subject to a system of polynomial equalities and inequalities
constraints [BPT12, Las15]. Given a concrete instance of a polynomial optimization problem and
a degree parameter 1 d, the SOS hierarchy 2 at level d specifies a semi-definite relaxation program,
whose size grows with d. The lager the degree d the tighter this relaxation becomes as additional
consistency constraints are imposed by the hierarchy and a harsher positive semi-definite condition
must be satisfied. The versatility of polynomials as a language to model combinatorial optimization,
statistics and machine learning problems makes the SOS hierarchy quite handy. More importantly,
SOS gives the best known polynomial time guarantees for several of these problems [FKP19]. This
striking success as a powerful algorithmic tool makes SOS lower bounds quite appealing as evidence
of hardness. This is specially true for some average case problems for which NP-hardness may not
be an option.

Being a strengthening of Linear Programming (actually the corresponding Sherali–Adams hi-
erarchy), it is expected that the SOS hierarchy may be instrumental in upcoming state-of-the-art
algorithms in diverse fields. It has been successfully applied to give subexponential time algorithms
for Unique Games. SOS provides the best known approximation guarantees for all Max k-CSPs.
More recently, it has been used in a variety of (robust) Statistics and Machine Learning problems,
where several improved polynomial time guarantees have been obtained. Also recently, SOS has
been employed in Coding Theory. On one hand SOS relieves the algorithm designer from defining
the semi-definite relaxation, on the other hand rounding (when needed) can be quite challenging.
A systematic theory of rounding that takes full advantage of the SOS hierarchy is an ambitious
open problem.

As Computer Science goes beyond worst-case guarantees, several average case problems seem
to defy our best algorithmic techniques leading one to conjecture their hardness. However, here
the sophisticated machinery of Probabilistically Checkable Proofs tailored to worst-case analysis
may not be available. Yet, one stills needs an answer regarding the hardness of these average case
problems (hardness can also lead to useful applications). Confronting an average case problem
against the SOS hierarchy and obtaining a confirmation that SOS fails (to provide the required
guarantees within a given degree range) can serve as some evidence of hardness. Of course, this is
not an evidence against all possible algorithms, but at least it says that a powerful meta-algorithm
(the SOS hierarchy) cannot do it. Showing an SOS lower bound entails showing a limitation on

1Sufficiently large to for the SDP to be well-defined.
2This is dual view of SOS hierarchy.
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this powerful meta-algorithm, which can be quite challenging. This study has produced quite
interesting objects and tools involving random matrix theory and Fourier analysis (the so-called
graph matrices). Similarly to the algorithmic front, a systematic theory of SOS lower bounds is an
ambitious open problem.

Before we reach a systematic understanding of the SOS hierarchy both in terms of upper and
lower bounds, it seems natural that we might need to develop it in a myriad of concrete problems
hopefully helping in pushing the state-of-the-art in several other fields along the way.

2 Algorithms

The following is a list of some SOS (or SOS-related) algorithms.

• In [CMY20], Cherapanamjeri–Mohanty–Yau show how to do list decode mean estimation
in nearly linear time. This improves the running time of the SOS based result for mean
estimation of [RY20].

• In [BK20], Bakshi and Kothari give a list decoding algorithm for subspace recovery.

• In [BBK+20], Bafna et al. show how to approximate unique games on constraint graphs
whose small-set expansion can be certified.

• In [RY20], Raghavendra and Yau give list decoding algorithms for learning (regression and
mean estimation).

• In [KKK19], Karmalkar–Klivans–Kothari also give list decoding algorithms for learning (re-
gression and mean estimation).

• In [AJQ+20], Alev et al. give list decoding algorithm for distance amplified codes using HDX
and expander graphs.

• In [AJT19], Alev et al. give approximation algorithms for k-CSPs on HDXs extending the
result of Barak–Raghavendra–Steurer [BRS11].

• In [RSS18], Raghavendra–Schramm–Steurer surveys the growing literature of SOS for high-
dimensional estimation (deducing parameters of distributions given their samples).

• In [BKS17], Barak–Kothari–Steurer give a exp(Õ(
√
n)-time algorithm to find a rank one

operator acting on an input subspace of ambient dimension n. This gives an exp(Õ(
√
n)-time

algorithm for QMA(2) with each witness dimension of n.

• In [BGG+17], Bhattiprolu et al. give approximation algorithms to compute the maximum
absolute value of a multivariate homogeneous polynomial over the sphere. Their result is
based on a weak decoupling result (de Finetti like result).

• In [HKP+17], Hopkins et al. show that that spectral algorithms using matrices whose entries
are low degree polynomials on the input variables provide similar guarantees of SOS. They
also show nearly tight SOS lower bounds for tensor and sparse PCA.

• In [RRS17], Raghavendra–Rao–Schramm give SOS refutation algorithms for random CSP
(see [KMOW17] for nearly matching lower bounds).
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• In [HSSS16], Hopkins et al. show faster spectral algorithms based on SOS proofs. Although
(standard) SOS is not the fastest algorithmic tool (in terms of finer polynomial running time),
its insights can lead to more efficient implementation.

• In [BKS14], Barak–Kelner–Steurer design some reasonably general rounding scheme for SOS.
In particular, they apply their techniques to polynomial optimization, with non-negative
coefficients, over the sphere.

• In [BRS11], Barak–Raghavendra–Steurer use the SOS hierarchy to give an approximation
algorithm for 2-CSPs with guarantees based on the threshold rank of a graph. They also
show that degree-npoly(ε) SOS can decide unique games. Qualitatively speaking their results
have some similarities to [GS11].

• In [GS11], Guruswami and Sinop use the SOS hiearchy to give approximation algorithms
with guarantees based on the threshold rank of a graph. They also show subexponential time
algorithm to decide unique games. Qualitatively speaking their results have some similarities
to [BRS11].

Although the SOS hierarchy specifies how to write an SDP program relxation given a polynomial
optimization problem and a degree d, it does not refrain the user from rounding if an integral
solution is need. Rounding can be quite challenging and it is not always clear what is the best
rounding scheme. Therefore, an ambitious open-ended question is the following.

Open Problem 2.1 (Open-ended Problem). Is there a general theory of SOS rounding?

The SOS hierarchy had some early successes in approximating CSPs, where under the Unique
Games Conjecture it provides the best approximation guarantees. It can decide unique games
in subexponential time and give efficient good approximations for CSPs on reasonably structured
graphs (low threashold rank). More recently, it has been successfully applied to machine learning,
some (robust) statistics and coding theory problems.

Open Problem 2.2 (Open-ended Problem). Which fields and algorithmic questions can (algo-
rithmically) benefit from the SOS hierarchy?

3 Lower Bounds

The following is a list of some SOS lower bounds.

• In [MRX20], Mohanty–Raghavendra–Xu quite surprisingly show how to lift degree-2 lower
bounds to degree-4 lower bounds under suitable conditions.

• In [Pot18], Potechin shows nearly tight upper and lower bounds on the ordering principle.

• In [KOS19], Kothari, O’Donnell and Schramm show how to incorporate global cardinality
constraints in SOS lower bounds. They obtain strong degree lower bounds for Min-Bisection
and Max-Bisection.

• In [Pot19], Potechin explores symmetry to give a framework for SOS lower bounds for sym-
metric problems.
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• In [KM18], Kothari and Mehta show SOS hardness of finding any equilibrium rather than for
those optimizing some objective function.

• In [KMOW17], Kothari et al. obtain nearly tight SOS lower bounds for refuting CSPs whose
predicates support a t-wise uniform distribution. Their PSD analysis is based on a Gram–
Schmidt orthoganalization process.

• In a breakthrough result [BHK+16], Barak et al. show nearly tight SOS lower bounds for the
planted clique problem. Their result introduce the general framework of pseudocalibration to
find good candidate integrality gap solutions.

• In [LRS15], Lee–Raghavendra–Steurer introduce reasonably general SDP lower bounds tech-
niques. In particular, they obtain that for MAX CSPs any polynomial-size SDP is equivalent
in power to degree-O(1) SOS.

• In [Tul09], Tulsiani obtain SOS integrality gaps for MAX k-CSPs. Then using reductions Tul-
siani obtains SOS gaps for Max Independent Set, Approximate Coloring, Chromatic Number
and Min Vertex Cover.

SOS lower bounds are oftentimes obtained in a case-by-case manner, though some general
elegant tools and techniques have emerged such as graph matrices and pseudo-calibration. Proving
that a given candidate solution is PSD can be quite challenging. One might ambitiously (and
possibly very naively) ask the following.

Open Problem 3.1 (Open-ended Problem). Is there a general theory of SOS lower bounds?

The preceding open problem may be too ambitious to ever see a positive resolution. However,
more modestly and of great interest is the following.

Open Problem 3.2 (Open-ended Problem). More tools and techniques for SOS lower bounds.

4 SOS Machinery

A noteworthy tool that has emerged in the study of SOS lower bounds are the so-called graph
matrices. They provide an elegant mix of Fourier analysis, combinatorics and random matrix
theory with (possibly) non independent entries.

• In [AMP16], Kwangjun et al. give a detailed account of the graph matrices machinery, which
is a powerful tool used in some SoS lower bound results. Graph matrices can be seen as a
matrix analogue of Fourier characters. Spectral norm bounds follow from simple combinatorial
properties of underlying graphs.

• In [CP20], Cai and Potechin pin-point the singular values spectra of some graph matrices
called Z-shaped.
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5 Misc

• In [RSST18], Raymond et al. show an equivalence of (the semi-define method of) flag algebras
and (symmetric) Sum-of-Squares. Their techniques are based on the representation theory of
the symmetric group.

• In [GP04], Gatermann and Parrilo show how to explore symmetries of a polynomial opti-
mization problem to greatly reduce the size of the corresponding SOS SDP program. They
use representation theory to find this succinct description.

• In [BBH+12], Barak et al. give an SOS proof of the hypercontractivity inequality obtaining
several applications. In particular, they rule out the short-code graph as a hard (super
polynomial) instance for SOS.
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