Local Analysis of Higher-Order Random Walks and Applications

October 17, 2019

Tighter Spectral Analysis 1

These notes are based on Vedat Levi Alev exposition in the HDX-Codes cluster. Define the operators $P_k^{\nabla} \coloneqq U_{k-1}D_k$ and $P_k^{\triangle} \coloneqq D_{k+1}U_k$ where $U_k \colon \mathbb{R}^{X(k)} \to \mathbb{R}^{X(k+1)}$ and $D_k \colon \mathbb{R}^{X(k)} \to \mathbb{R}^{X(k-1)}$ are the usual up and down operators of a weighted simplicial complex $X(\leq d)$. For convenience, we will be working with size rather than dimension.

Theorem 1.1 (Kaufman-Oppenheim [3]).

$$\lambda_2(P_k^{\nabla}) \le 1 - \frac{1}{k+1} + \frac{k}{2} \cdot \gamma,$$

where $\gamma = \max_{S \in X(\langle k-2 \rangle)} \lambda_2(A_S)$.

Remark 1.2. The above result requires the links to be $\gamma = O(1/k^2)$ expanding to give a non-trivial bound on $\lambda_2(P_k^{\nabla})$.

Alev et al. show that the P_k^{∇} walk satisfy $\lambda_2(P_k^{\nabla}) < 1$ provided $\gamma < 1$. More precisely, they showed the following.

Theorem 1.3 (Alev et al. [1]). For $k \in [d]$, we have

$$\lambda_2(P_{k-1}^{\triangle}) = \lambda_2(P_k^{\nabla}) \le 1 - \frac{1}{k} \prod_{i=0}^{k-2} (1 - \gamma_i),$$

where $\gamma_i = \max_{S \in X(i)} \lambda_2(A_S)$ and A_S is the normalized adjacency operator of the link X_S .

Define and $P_k^{\wedge} := (k+1)/k \cdot (D_k U_{k+1} - I/(k+1))$, i.e., P_k^{\wedge} is the non-lazy version of P_k^{\triangle} . The key lemma is the following.

Lemma 1.4 (Key Lemma). For $k \in [d-1]$, we have

$$P_k^{\wedge} - P_k^{\nabla} \leq \gamma_{k-1} (I - P_k^{\nabla}).$$

A version of Lemma 1.4 was known with RHS $\gamma_{k-1}I$. The change to $\gamma_{k-1}(I-P_k^{\nabla})$ was crucial to the improved bound on $\lambda_2(P_k^{\nabla})$. We omit the proof of Lemma 1.4, but observe that it follows from a finer account of the mass of "parallel vectors on the links" similar in spirit to the proof of Oppenheim Trickling-down Theorem.

Proof of Theorem 1.3. The equality $\lambda_2(P_{k-1}^{\triangle}) = \lambda_2(P_k^{\nabla})$ readily follows from $P_{k-1}^{\triangle} := D_k U_{k-1}$ and $P_k^{\nabla} := U_{k-1} D_k$ having the same multiset of non-zero eigenvalues.

Now, the proof proceeds by induction. Note that $P_1^{\nabla} = U_0 D_1$ is rank one and thus $\lambda_2(P_1^{\nabla}) = 0$ proving the base case.

From Lemma 1.4, we have $P_k^{\wedge} \leq \gamma_{k-1} I + (1 - \gamma_{k-1}) P_k^{\nabla}$ implying

$$\lambda_{2}(P_{k}^{\wedge}) \leq \gamma_{k-1} + (1 - \gamma_{k-1})\lambda(P_{k}^{\nabla})$$

$$\leq \gamma_{k-1} + (1 - \gamma_{k-1})(1 - \frac{1}{k} \prod_{i=0}^{k-2} (1 - \gamma_{i}))$$

$$= 1 - \frac{1}{k} \prod_{i=0}^{k-1} (1 - \gamma_{i}).$$

Since $P_k^{\wedge} \coloneqq (k+1)/k \cdot (P_k^{\triangle} - I/(k+1))$, we concluded that

$$\lambda_2(P_k^{\triangle}) \le 1 - \frac{1}{k+1} \prod_{i=0}^{k-1} (1 - \gamma_i),$$

also giving a bound for $\lambda_2(P_{k+1}^{\nabla}) = \lambda_2(P_k^{\triangle})$.

2 Applications

For instance, fast mixing of the high-dimensional walks has found applications in counting/sampling combinatorial objects [2]. Therefore, it is highly desirable to reduce the expansion requirement of the links as much as possible.

References

- [1] Vedat Levi Alev, Nima Anari, Lap Chi Lau, Kuikui Liu, and Shayan Oveis Gharan. A note on the second eigenvalue of higher order random walks. 2019. https://cs.uwaterloo.ca/~vlalev/notes/higher-order.pdf.
- [2] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. *CoRR*, abs/1811.01816, 2018.
- [3] Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 Princeton, NJ, USA, pages 47:1–47:17, 2018.